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ABSTRACT 
By means of a computer-aided fashion design system, a fashion designer can easily make changes 

to the various colors, textures and pattern prints of clothing design, and thus need not draw on paper a 
great number of drafts. One of the most difficult tasks in a computer-aided fashion design system is to 
separate the clothing of interest on a model from the background, so that changes can be applied to the 
material. There exist folds, shadows, diverse textures, etc. on the clothing which make the segmentation 
work difficult. In this paper, a color texture segmentation method for clothing segmentation is proposed. 
Color quantization is first performed to reduce the number of colors and shadow/highlight effects on 
the image. The color texture features are then extracted based on the finite prolate spheroidal sequences. 
By these features, a hierarchical coarse-to-fine segmentation method is used to separate the clothing 
from the backgrounds. Finally, post-processing is applied to obtain a smooth clothing boundary. 
Satisfactory experimental results have been achieved using the proposed approach. 

Key words: finite prolate spheroidal sequences, color quantization, texture segmentation, local centroid 
clustering. 

1. INTRODUCTION 

A traditional fashion designer has to draw a great number of drafts in order to 
accomplish an ideal style. Howerver, due to the rapid development of computer 
software, a computer-aided fashion design system has become feasible. Through 
the computer program’s cut and paste commands (functions), when colors or 
pattern prints of the designed clothing are to be modified, it is not necessary to 
draw a new draft. Only the part to be modified is cut and pasted on the computer. 
Therefore, much drawing work on paper can be saved, and appropriate colors or 
pattern prints on the designed clothing can be determined quickly according to the 
customer model. Better performance can thus be achieved. 

In a computer-aided fashion design system, one of the most difficult tasks is 
to separate the desired clothing from backgrounds automatically. Few commercial 
image processing or image editing packages can perform the segmentation well. 
For some packages, the users even have to specify by hand the clothing boundary. 
Some other packages might provide an automatic segmentation function, but the 
segmentation results are unsatisfactory. There are folds, shadows, diverse textures, 
etc. on the clothing which make the segmentation work difficult. In this paper, 
designing an algorithm that can automatically separate the clothing of interest from 
backgrounds is our aim. 
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Segmentation is a process of partitioning an image into several meaningful 
regions that are homogenous with respect to some characteristics, like colors, 
textures, etc. Various methods have been presented for texture and image 
segmentation or classification. For texture segmentation, statistical methods have 
been widely used to extract texture features from an image (Conners & Harlow, 
1980; Paragios & Deriche, 2002; He & Chen, 2000; Reed & Hans du Buf, 1993). 
However, these methods can not characterize well the structural characteristics of 
textures. Structural methods (Reed & Hans du Buf, 1993) are good for textures 
which are composed of well-defined texture elements. Since many textures violate 
this property, structural methods are of limited utility. Space/spatial-frequency 
based methods (Reed & Hans du Buf, 1993; Slepian, 1978; Wilson, 1987; Wilson 
& Spann, 1988; Bovik, Clark & Geisler, 1990; Teuner, Pichler & Hosticka, 1995; 
Dunn & Higgins, 1995; Unser, 1995) have been found to be of great use in texture 
segmentation. For example, orientation and frequency selection methods, such as 
the Gabor and Wavelet transform (Wilson, 1987; Wilson & Spann, 1988; Bovik et 
al., 1990; Teuner et al., 1995; Dunn & Higgins, 1995; Unser, 1995; Huang, Dai & 
Lin, 2006), have been widely used and good segmentation results have been shown. 
Their main drawbacks are the complicated computation and the need for prior 
determination of parameters. The finite prolate spheroidal sequences (FPSS) 
(Slepian, 1978; Wilson, 1987; Wilson & Spann, 1988), used in this paper, was 
presented early in 1978 by Slepian (Slepian, 1978), but not used on image 
processing until 1987 by Wilson (Wilson, 1987). Using the FPSS, we can specify 
intervals of both the spatial and frequency domains simultaneously, and thus can 
characterize textures easily in both the spatial and frequency domains. That is, the 
local information (relationship among pixels within a texture element) and global 
information (relationship among texture elements) of textures can be characterized.  

In this paper, a color texture segmentation method is proposed to separate or 
segment the clothing of interest from backgrounds. The clothing to be segmented is 
specified by the designer (or the user) using a seed point. The clothing where the 
seed point locates is the one of interest. There are mainly three stages in our 
segmentation method. In the first stage we quantize the input color image to reduce 
the number of colors on the image. As a result, both the computational cost in 
segmentation and the effect of shadows and highlights on the image can be reduced. 
Then we use the FPSS, which can characterize the textures in both the spatial and 
frequency domains, to extract the features of the clothing. In the second stage, a 
coarse-to-fine segmentation method is applied based on the extracted features. A 
clustering method (the local centroid clustering method (Wilson & Spann, 1988)) is 
performed to coarsely segment the textures, and a hierarchical refinement process is 
utilized to refine the texture boundaries. After segmentation, each region contains 
textures which are homogeneous with respect to the extracted features. A simple 
region growing algorithm is then performed from the given seed point to locate the 
clothing boundary. Finally, post-processing is applied in the third stage to smooth 
the clothing boundary. The experimental results indicate that our proposed 
approach is indeed effective, and can somewhat tolerate shadows, highlights, folds, 
and texture orientations on the clothing. 
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In the remainder of this paper, detailed descriptions of the proposed approach 
are given in Section 2, including an introduction to the FPSS, the feature extraction 
method, the color texture segmentation method and post-processing for boundary 
smoothing. Experimental results are presented in Section 3. Conclusions appear in 
the last section. 

2. PROPOSED APPROACH 

There are three main stages in the proposed approach to separating the 
clothing of interest from backgrounds. These are feature extraction, color texture 
segmentation and post-processing. In Section 2.1 we introduce the features used for 
texture segmentation. A description of the feature extraction method is also 
included in this section. The hierarchical coarse-to-fine color texture segmentation 
approach is described in Section 2.2. Finally, post-processing for smoothing the 
clothing boundary is given in Section 2.3. 

2.1 Feature Extraction Based on FPSS 

A. FPSS 
Before introducing the FPSS, we first define two operators: the truncation 

operator and bandlimiting operator. The truncation operator, Tn1, n2, is defined as 
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The output matrix Tn1,n2M obtained from applying the truncation operator Tn1, n2 to 
the matrix M is called a truncated matrix. A vector v is called index limited if it 
satisfies 

vvT =2,1 nn . (3) 

The bandlimiting operator Bm1, m2 is defined as 

FTFB 2,1
*

2,1 mmmm =  (4) 
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where F is the discrete Fourier transform (DFT) matrix (Gonzalez & Woods, 2007), 
which is defined as 

nk
n

kj
nk <≤

−
= l

l
l

,0    ),2exp(1 πF  (5) 

and F*, the conjugate of F, is the inverse DFT (IDFT) matrix. Bm1, m2 can also be 
regarded as an n×n matrix. A vector u is called bandlimited if the following 
equation is satisfied: 

uuB =2,1 mm . (6) 

As the name, truncation operator, indicates, when a truncation operator Tn1, n2 
is applied to a matrix the values of the elements within the specified range (from n1 
to n2) in the matrix are unchanged, but the values of elements outside the range are 
set to zero. The region formed by the unchanged elements in this matrix is called 
the truncated region. Since the truncation operation is performed directly on a 
matrix, it is a spatial-domain operation. The bandlimiting operator is very much 
like the truncation operator. When applying the bandlimiting operation to a matrix 
(see Equation (4)), we first transform the matrix from the spatial domain to the 
frequency domain using the DFT matrix F, then perform the truncation operation 
on the transformed matrix, and finally, transform the truncated matrix from the 
frequency domain to the spatial domain using the IDFT matrix F*. Note that the 
bandlimiting operation is a frequency-domain operation whereas the truncation 
operation is a spatial-domain one. 

We frequently need to specify the interval of time and the interval of 
frequency in analyzing a signal. We can specify the interval of time by a truncation 
operator with two parameters n1 and n2, and specify the interval of frequency by a 
bandlimiting operator with two parameters m1 and m2. However, can we use a 
single operator which can specify both intervals at the same time? As Equations (3) 
and (6) show, an index limited vector is an eigenvector of Tn1, n2 and a bandlimited 
vector is an eigenvector of Bm1, m2. It is clear that Tn1, n2 and Bm1, m2 are both 
Hermitian (Hogben, 2007), and that in general Tn1, n2Bm1, m2 ≠ Bm1, m2Tn1, n2. 
Furthermore, it can be shown that no vector exists which is an eigenvector of both 
Tn1, n2 and Bm1, m2 (Hogben, 2007). Thus, the answer of the above question is ‘no’. 
That is, we can not find such an operator to specify both intervals at the same time. 
The question is now changed for an alternative solution, “Can we find an index 
limited vector which can approximate the bandlimited vector with the smallest loss 
of energy, and vice versa?” The answer is ‘yes’ (Wilson, 1987), and it is the index 
limited eigenvector e0 corresponding to the largest eigenvalue θ0 of the operator 
Tn1,n2Bm1,m2: 

1102,12,1  and  0   ,  −≥≥≥<≤= nkkkmmnn nk θθθθ LeeBT  (7) 

or the bandlimited eigenvector g0 corresponding to the largest eigenvalue θ0 of the 
operator Bm1, m2Tn1, n2: 



C. C. Chien, L. L. Wang / Asian Journal of Health and Information Sciences, Vol. 1, No. 4, pp. 425-445, 2007 

 429

1102,12,1  and  0   ,  −≥≥≥<≤= nkkknnmm nk θθθθ LggTB . (8) 

The eigenvectors ek, 0 ≤ k < n, form the FPSS. The relation between ek and gk 
(Wilson, 1987) is 

nkkmmkk <≤= − 0  ,  2,1
2/1 eBg θ . (9) 

The eigenvector ek is index limited and can approximate gk with the minimum 
loss; likewise, the bandlimited vector gk can approximate the ek. Figure 1 shows the 
spatial response and the frequency response of e0 and g0. Using the FPSS, we can 
specify both intervals in the spatial and frequency domains. The operator Tn1n2 is 
mainly concerned with an interval in the spatial domain, but the operator Bm1m2 an 
interval in the frequency domain. 
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Figure 1. Spatial and frequency responses of e0 and g0 with (n=25, n1=10, n2=14, m1=7, 
m2=17): (a) spatial response of e0; (b) frequency response of e0; (c) spatial 
response of g0; (d) frequency response of g0. 

B. 2-D FPSS 
The FPSS introduced above is of one-dimensional (1-D) form. To process 

two-dimensional (2-D) images, we extend it to the 2-D form. The FPSS of a 2-D 
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form is just the combination of two 1-D FPSS’s respectively in the horizontal (x) 
and vertical (y) directions of the Cartesian coordinate system. The truncation and 
bandlimiting operators of 2-D form are therefore the Kronecker products (Hogben, 
2007) of those of 1-D form. Thus, the 2-D form of Equation (7) is 

nkykxkykxkykxkyxyxk <≤⊗=⊗⊗⊗= 0    ,eeeeBBTTTBe θθ  (10) 

where T and B are both n×n matrices, denoting respectively the 2-D truncation 
operator and the bandlimiting operator. Tx and Bx are respectively the 1-D 
truncation operator and bandlimiting operator in the x direction, and Ty and By are 
respectively the 1-D truncation operator and bandlimiting operator in the y 
direction; ek are the eigenvectors (2-D FPSS) of TB; exk and θxk are respectively the 
eigenvectors (1-D FPSS) and eigenvalues of TxBx with parameters (xn1, xn2, xm1, 
xm2), and eyk and θyk are respectively the eigenvectors (1-D FPSS) and eigenvalues 
of TyBy with parameters (yn1, yn2, ym1, ym2). 

Given the parameters (xn1, xn2, xm1, xm2) and (yn1, yn2, ym1, ym2), we can 
use two 1-D FPSS’s exk and eyk to obtain the 2-D FPSS ek. With these parameters, 
the truncated region in the spatial domain and that in the frequency domain are both 
rectangular. The regions truncated to rectangular shapes are of Cartesian separable 
form (Wilson & Spann, 1988). Note that the 2-D truncation operator T with 
parameters (xn1, xn2, yn1, yn2) can be treated as a mask matrix, where the values 
are all 1’s within the truncated region but 0’s outside the region. Hence, the 
truncation operation TM becomes the entry-by-entry product of T and M (Hogben, 
2007):  
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where “.×” is the entry-by-entry product operator. By Equations (10) and (11), we 
can derive the general form of the 2-D FPSS (Wilson, 1987) as follows: 
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kkkfsk eFeFTFFTTBe θ=⊗⊗= **  (12) 

where Ts and Tf denote truncation operators in the spatial domain and the frequency 
domain, respectively. In Equation (10), we use a 1-D FPSS in the x direction and a 
1-D FPSS in the y direction to derive the 2-D FPSS. While in Equation (12), we 
obtain the 2-D FPSS through the specification of a truncated region in the spatial 
domain (Ts) and that in the frequency domain (Tf). The truncated regions of the 
spatial domain and the frequency domain can be of arbitrary shape. A 
rectangular-shape truncated region is of Cartesian separable form (Wilson & Spann, 
1988). A circular-shape or wedge-shape truncated region is of polar separable form 
(Wilson & Spann, 1988). Different shapes of truncated region can be obtained by 
using different mask matrices. 
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(a)                         (b) 

Figure 2. Different shapes can be used in the mask matrix: (a) circular; (b) wedge. 

C. Color Texture Features 
Selection of texture features is important for color image segmentation. 

Without good features, no matter how good the segmentation scheme is, the result 
will not be satisfactory. Hence, many approaches have given emphasis to selecting 
or extracting promising features for texture segmentation. 

In this paper, the FPSS is used to extract the texture features of the clothing. 
Using the FPSS, we can characterize textures in both the spatial and frequency 
domains. Hence, the local and global information of textures can be obtained. That 
is, we can use the FPSS to characterize the relationship among pixels within a 
texture element (local information) and that among texture elements (global 
information). Before extracting texture features, we first transform the input image 
from the RGB (red, green, blue) space to the HSI (hue, saturation, intensity) space. 
Next, we apply the circular hue histogram approach (Li & Tseng, 1995) to quantize 
the hue image such that both the number of colors and the influence of 
shadows/highlights on the image can be reduced. Figure 3 shows four color model 
images, and Figure 4 shows their quantized results. 
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(a)                                 (b) 

  
(c)                                 (d) 

Figure 3. Color images of four models. 

  
(a)                                 (b) 

  
(c)                                 (d) 

Figure 4. Quantized results of images in Figure 3: (a) quantized to 7 colors; (b) quantized to 
7 colors; (c) quantized to 8 colors; (d) quantized to 6 colors. 
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The texture features will be obtained by convoluting the FPSS with the 
quantized image. Let the truncated region of a FPSS in the spatial domain be S, and 
that in the frequency domain be Ω. Assume that the areas of S and Ω are A(S) and 
A(Ω), respectively and they satisfy  

MNASA =Ω)()(  (13) 

where M and N are the width and height of the image, respectively. The first 
eigenvector e0 of the FPSS is an effective basis for the whole spatial and frequency 
domains (Wilson, 1987; Wilson & Spann, 1988). Consequently, if we choose the 
parameters of the FPSS such that Equation (13) holds, the texture features 
generated from the first eigenvector of each FPSS will be promising for 
segmentation. 

We can truncate the frequency domain to a set of disjoint regions, which 
constitute a tessellation. Different FPSS’s can be generated when we use different 
tessellations. In the spatial domain, the truncated region is located in the center, and 
its size is the same as that of the convolution window. In the frequency domain, 
there are two commonly used tessellations, the Cartesian separable tessellation and 
the polar separable tessellation (Wilson & Spann, 1988), as shown in Figure 5. The 
Cartesian separable tessellation is computationally easy, and it has been shown that 
using the Cartesian separable tessellation is as good as using the polar separable 
tessellation for texture segmentation (Wilson & Spann, 1988).  

Ω0 Ω1 Ω2

Ω3 Ω4 Ω5

Ω6 Ω7 Ω8  
(a) 

 

(b) 

Figure 5. Tessellations used in the frequency domain: (a) Cartesian separable tessellation; (b) 
polar separable tessellation. 



C. C. Chien, L. L. Wang / Asian Journal of Health and Information Sciences, Vol. 1, No. 4, pp. 425-445, 2007 

 434

In the paper, the 9-region Cartesian separable tessellation is used. Let the 9 
regions of the tessellation be denoted as Ω0, Ω1, …, Ω8 (the width and length of the 
9 regions are all n). Given a quantized image I and the set of n2×1 eigenvectors 
e0(Ωi) of the FPSS’s, 0 ≤ i ≤ 8, we define the texture feature vector F(x, y) for each 
point (x, y) in the image as follows: 

)),( , ),,( ),,((),( 810 yxfyxfyxfyx L=F  

with 

80           ,*),(),( ≤≤= iyxyxf ii fpssI  

and 

ll +×
Ω= nkiki )(0efpss  (14) 

where * is the convolution operator. These feature vectors will be used in the 
segmentation in the next section. 

2.2 Color Texture Segmentation 

The texture feature vectors F(x, y) are used as features here for texture 
segmentation. The segmentation method used in this paper is a multi-dimensional 
hierarchical coarse-to-fine approach. In the method, we first build a hierarchical 
structure based on the feature vectors in a bottom-up manner. Next, we segment the 
top level (the coarsest resolution level) of the structure by a local centroid 
clustering algorithm (Wilson & Spann, 1988). Finally, using the coarse 
segmentation results, we proceed down the hierarchical structure to refine the 
boundaries of texture regions level by level until the bottom level (the finest 
resolution level) is reached. This coarse-to-fine segmentation process can reduce 
the noise on the image. Furthermore, finding texture boundaries using the 
level-by-level segmentation method can achieve a lower computational cost. 

A. Building a hierarchical structure 
The hierarchical structure that we build for segmentation is the so-called 

quadtree (Wilson & Spann, 1988). Each feature vector F(x, y) extracted from the 
FPSS is considered as a point in the bottom level of the quadtree. Each level, 
except the bottom level, of the quadtree is constructed from its lower level. The 
value of each point in the l-th level is computed from the values of four points in 
the (l-1)-th level in an averaging manner. Assume that the bottom level 2n

×2n 
points. Let the value of a point located at (x, y) in the l-th level of the quadtree be 
denoted as q(x, y, l). Then 

lll −

= =
<≤∑ ∑ −++= n

u v
yxvyuxyx 2,0    ,)1 ,2 ,2(

4
1),,(

1

0

1

0
qq . (15) 
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Note that q(x, y, 0) = F(x, y). The size of each level (i.e., the number of points 
in each level) is one-fourth of that of its lower level. When a level of 16×16 points 
is obtained, we terminate the quadtree construction process. That is, the top level is 
16×16 points. If the top level is of large size, then a lot of the cost of computing 
will be spent in the segmentation of the top level. However, if it is of small size, 
then the texture boundaries on the top level will be too blurred to segment. The size 
of the top level is obtained by experience. The noise is reduced in the higher level 
after the averaging operation is performed, but the boundaries of texture regions are 
blurred at the same time. Therefore, segmenting the top level of the quadtree, we 
obtain a coarse segmentation result. Proceeding down the quadtree, we can refine 
the segmentation results to locate the correct texture boundaries.  

B. Segmenting the top level of the structure 
The segmentation work starts from the top level of the quadtree. The 

segmentation result of the top level will have a great influence on the entire 
segmentation process. A misclassified point q(x, y) in the top level will result in the 
misclassification of four points (which are used to generate q(x, y) in quadtree 
construction) in its lower level. Furthermore, when segmenting downwards, the 
number of misclassified points grows four times when its lower level is processed. 
For example, if a point in the top level which is 16×16 is misclassified, then 256 
points will be misclassified in the bottom level which is 256×256. Consequently, 
segmentation of the top level is of importance. At the top level two steps need to be 
performed: 

(1) Local centroid clustering: segmenting the texture image. 
(2) Insignificant regions removal: removing regions whose number of points is 

small. 

The local centroid clustering is an iterative process (Wilson & Spann, 1988). 
The feature set used here is the set of features q(x, y, L) (L denotes the top level of 
the quadtree). For each point q in the feature set, we compute the local center LCq 
from its neighboring points p in a widow WR of a specified radius R as follows: 

∑

∑
=

∈

∈

R

R

W

WLC

p

p
q

p

1
. (16) 

Each point will be moved to a new local center or stay unchanged if its location is 
the same as that of the local center. Then a new iteration is performed again using 
the new locations of all points. The process terminates when all points stay 
unmoved. The points which occupy the same location form a class. In the paper, 
weights are added to Equation (16) for computing the local center as follows: 
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where dqp is the Euclidean distance from q to p. By Equation (17), we need not to 
specify the window of q but use all the points in the feature space to compute its 
local center. Its advantage is that no a priori information on the number of classes 
or the class centers is required. 

The purpose of this paper is to separate the clothing of interest from 
backgrounds. We assume that the clothing to be segmented occupies a significant 
percentage in the image. There may be buttons, pockets or folds on the clothing 
whose textures are different from the clothing texture. They are usually grouped 
into classes with small areas in the top level. Consequently, we remove these 
insignificant classes or regions and reassign them such that the whole clothing 
region can be obtained. 

The insignificant regions are removed using the following steps (Schroeter & 
Bigün, 1995). We first find all regions whose number of points is small. Second, 
for each point q(x, y, L) in these regions, determine its neighboring classes Ck 
(0≤k≤7) in its eight directions (see Figure 6). If the class of q(x+u, y+v, L), -1≤u, 
v≤1, is different from that of q(x, y, L), then the class of q(x+u, y+v, L) is stored as 
a neighboring class of q(x, y, L). Otherwise, we consider the next point q(x+2u, 
y+2v, L) in the same direction and compare the classes of q(x, y, L) and q(x+2u, 
y+2v, L). If they are different, the class of q(x+2u, y+2v, L) is stored as a 
neighboring class of q(x, y, L). If they are the same, we consider the next point 
q(x+3u, y+3v, L) in the same direction. The process is repeated until a neighboring 
class of q(x, y, L) is found. After we obtain eight neighboring classes for the point 
q(x, y, L), we reassign q(x, y, L) to one of the neighboring classes whose center has 
the minimum Euclidean distance (Gonzalez & Woods, 2007) to q(x, y, L). For 
example, in Figure 6, the eight neighboring classes of q are (C0, C1, …, C7) = (1, 3, 
3, 3, 3, 2, 2, 2). Then we reassign q to class 1, assuming the distance from the 
center of class 1 to q is smaller than those from class 2 and class 3. 

After removing insignificant regions, segmentation of the top level is 
completed.  
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Figure 6. Eight directions of the point q. 

C. Segmenting downwards from the top level of the structure 
The class boundaries obtained in the top level are blurred or rough. 

Proceeding downwards the quadtree level by level from the top, we can refine the 
boundaries. The following steps are used to compute the texture boundaries at the 
l-th level of the quadtree: 

(1) Initialize the set of boundary points, B(l), in the l-th level to be an empty set. 
(2) Apply the following rule to each point q(x, y, l) in the l-th level for finer 

classification:  

if the classes of )1,
2

,
2

( +++ lvyuxq  are the same for all integers u and v, 

-1 ≤ u, v ≤ 1,  
then assign q(x, y, l) to the class of q(x/2, y/2, l+1); 

else set B(l) = B(l) ∪ (x, y). 

(3) For each point q ∈ B(l), assign it to one of the classes of its corresponding 9 
points in the (l+1)-th level (see Figure 7) whose center has the minimum 
distance to q.  

The above steps are repeated for each level until the bottom level is reached.  
In quadtree construction, a point )

2
,

2
( yxq  in the (l+1)-th level is obtained 

from four points (q(x, y), q(x, y+1), q(x+1, y), q(x+1, y+1)) in the l-th level, as 
shown in Figure 7. Therefore, the classes of these four points in the l-th level are 
determined by the classes of )

2
,

2
( yxq  and its 8 neighboring points in the (l+1)-th 

level. If the 9 points in the (l+1)-th level are of the same class, then all the four 
points in the l-th level are assigned to this class. Otherwise, each of these four 
points is reassigned to one of the classes of the 9 points in the (l+1)-th level whose 
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center has the minimum distance to it. Thus, the boundary location in the l-th level 
is more accurate than that in the (l+1)-th level. By performing the refinement 
process level by level from top to bottom, the boundaries can be located with 
greater and greater precision. In the final result, we obtain the class of each point on 
the image. We then apply a simple region growing algorithm (Gonzalez & Woods, 
2007) starting from a given seed point to locate the whole clothing boundary. 
Figure 8 shows the segmentation results of the model images in Figure 4. 

q(x, y)
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Figure 7. The corresponding 9 points in the (l+1)-th level for the point q(x, y) in the l-th 
level. 

2.3 Post-Processing 

The extracted clothing boundary obtained in the previous stage is frequently 
jagged. Hence, post-processing is necessary to obtain a smooth clothing boundary. 
There are two steps in post-processing, including morphological filtering (Gonzalez 
& Woods, 2007) and Gaussian smoothing (Lin, Wang & Yang, 1996). 

The morphological filtering process consists of the opening and closing 
operations. The opening operation can eliminate the protrusions, while the closing 
operation can fill the gaps. We use the filter on the clothing region to remove small 
protrusions and gaps on the clothing boundary, and thus smooth the boundary. A 
circular structuring element with radius 3 is used in the morphological filter in our 
experiments. The filtering results of the images in Figure 8 are shown in Figure 9. 
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(a)                                 (b) 

  
(c)                                 (d) 

Figure 8. Segmentation results of images in Figure 4 without post-processing. 

  
(a)                                 (b) 

  
(c)                                 (d) 

Figure 9. Morphological filtering results of images in Figure 8. 
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After morphological filtering, the clothing boundary is still a little jagged 
though the protrusions and gaps are removed. We use the Gaussian smoothing 
algorithm on the clothing boundary to smooth the boundary. The Gaussian 
smoothing algorithm uses the Gaussian function to convolute an input 1-D signal 
for smoothing the signal. In the algorithm, the spread parameter (or the standard 
deviation) of the Gaussian function is automatically determined by an iterative 
process (Lin et al., 1996). To apply the algorithm, we represent the boundary as a 
sequence of points with their (x, y) coordinates: (x0, y0), (x1, y1), …, (xn-1, yn-1), 
where n is the number of boundary points. The x and y coordinates of the points 
form two 1-D signals (x0, x1, …, xn-1) and (y0, y1, …, yn-1), respectively. Thus we 
apply the automatic Gaussian smoothing algorithm on these two 1-D signals to 
smooth the signals. Finally, the clothing boundary can be polygonally 
approximated based on the two smoothed 1-D signals (Lin et al., 1996). The 
smoothing results of the images in Figure 9 are shown in Figure 10. 

  
(a)     (b) 

  
(c)     (d) 

Figure 10. Gaussian smoothing results of images in Figure 9. 

3. EXPERIMENTAL RESULTS 

The proposed approach has been implemented in C language on a 
Pentium-100 PC with an UMAX digital color scanner and the MATLAB 
mathematical tool package. Most model images are obtained from magazines, such 
as LADY BOUTIQUE, JUNIE, and NON-NO. 
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In the experiments, the truncated region in the spatial domain is 11×11 points. 
Each of the 9 truncated regions in the frequency domain is 23×23 points and the 
whole frequency domain is 69×69 points. Some experimental results are shown in 
Figures 11 through 14. Figure 11 shows the segmentation results of four samples of 
non-textured clothing. The shadows and highlights on the clothing are evident. 
Figure 12 shows the segmentation results of four samples of textured clothing. In 
these images, shadows, highlights and folds are apparent on the clothing. Figure 13 
shows the segmentation results of four samples of textured clothing with larger 
pattern prints. Figure 14 shows the segmentation results of four samples of textured 
clothing with serious folds. It takes about two minutes in total for each 256×256 
image to separate the clothing of interest from the background.  

To evaluate the experimental results quantitatively, an error function is 
defined. Let P be the clothing region whose boundary is found by the proposed 
method, and H be that whose boundary is specified by hand. The error function e(P, 
H) is defined as 

)(
)()() ,(

HA
HPAHPAHPe ∩−∪

=  

where A(⋅) denotes the area. The value of the error function for each segmentation 
result is given in Figures 11 through 14. The average value of the error function in 
Figures 11 through 14 is about 2.96%. 

  
(a) e(P, H) = 1.42%               (b) e(P, H) = 3.45% 

  
(c) e(P, H) = 3.42%          (d) e(P, H) = 0.63% 

Figure 11. Segmentation results of non-textured clothing. 
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(a) e(P, H) = 1.33%               (b) e(P, H) = 2.39% 

  
(c) e(P, H) = 3.67%               (d) e(P, H) = 4.14% 

Figure 12. Segmentation results of textured clothing. 

  
(a) e(P, H) = 3.28%               (b) e(P, H) = 1.50% 

  
(c) e(P, H) = 1.77%               (d) e(P, H) = 2.96% 

Figure 13. Segmentation results of clothing with larger pattern prints. 
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(a) e(P, H) = 12.16%             (b) e(P, H) = 0.95% 

  
(c) e(P, H) = 2.70%             (d) e(P, H) = 1.57% 

Figure 14. Segmentation results of clothing with serious folds. 

From these figures, some defects can be found in the segmentation results 
which still remain to be solved. First, when the clothing to be segmented and the 
background have similar hue attributes, some points on the background or on the 
clothing will be misclassified. Second, when there are serious shadows or 
highlights on the clothing, the points on it may also be misclassified. Finally, if 
there is a hole which is surrounded by the clothing region, it may be considered as 
an insignificant region and be reassigned to the class of the clothing. Figure 12(d) 
shows an example. 

4. CONCLUSIONS 

In this paper, we have proposed a color texture segmentation method for 
segmenting clothing of interest from a background. The texture features extracted 
based on the FPSS is promising for segmentation. Texture characteristics in both 
the spatial and frequency domains can be captured adequately by the FPSS. The 
hierarchical coarse-to-fine segmentation process shows its ability with noise 
reduction and boundary information preserving. The proposed approach is 
somewhat tolerant of shadows, highlights, folds and orientation variations on the 
textures and satisfactory experimental results are achieved. 
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Further research may be directed to the following topics. The first is to use 
more color information rather than only the hue attribute of an image to improve 
the quantization effect. The second is to find efficient algorithms for convolution 
operations and for solving the eigensystem problem (computing the eigenvectors 
and eigenvalues of a matrix) to improve the computing speed. And the third is to 
achieve better performance by resolving the serious shadow/highlight problem. 

REFERENCES 

Bovik, A. C., Clark, M., & Geisler, W. S. (1990). Multichannel texture analysis 
using localized spatial filters. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 12(1), 55-73. 

Conners, R. W., & Harlow, C. A. (1980). A theoretical comparison of texture 
algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 
2(3), 204-222. 

Dunn, D., & Higgins, W. E. (1995). Optimal Gabor filters for texture segmentation. 
IEEE Transactions on Image Processing, 4(7), 947-964.  

Gonzalez, R. C., &  Woods, R. E. (2007). Digital Image Processing. New Jersey, 
USA: Prentice Hall. 

He, H., & Chen, Y. Q. (2000). Unsupervised texture segmentation using resonance 
algorithm for natural scenes. Pattern Recognition Letters, 21, 741-757. 

Huang, P. W., Dai, S. K., & Lin, P. L. (2006). Texture image retrieval and image 
segmentation using composite sub-band gradient vectors. Journal of Visual 
Communication and Image Representation, 17, 947-957.  

Hogben, L. (2007). Handbook of Linear Algebra. Florida, USA: Chapman. 
Li, Y. F., & Tseng, D. C. (1995). Circular histogram thresholding for color image 

segmentation. proceedings of the International Conference on Document 
Analysis and Recognition, Montreal, Canada. 

Lin, H. C., Wang, L. L., & Yang, S. N. (1996). Automatic determination of the 
spread parameter in Gaussian smoothing. Pattern Recognition Letters, 17(12), 
1247-1252.  

Paragios, N., & Deriche, R. (2002). Geodesic active regions and level set methods 
for supervised texture segmentation. International Journal of Computer Vision, 
46(3), 223-247. 

Reed, T. R., & Hans du Buf, J. M. (1993). A review of recent texture segmentation 
and feature extraction techniques. CVGIP: Image Understanding, 57(3), 
359-372. 

Schroeter, P., & Bigün, J. (1995). Hierarchical image segmentation by 
multi-dimensional clustering and orientation-adaptive boundary refinement. 
Pattern Recognition, 28(5), 695-709. 

Slepian, D. (1978). Prolate spheroidal wave functions, Fourier analysis, and 
uncertainty - V: the discrete case. The Bell System Technical Journal, 57(5), 
1371-1430. 



C. C. Chien, L. L. Wang / Asian Journal of Health and Information Sciences, Vol. 1, No. 4, pp. 425-445, 2007 

 445

Teuner, A., Pichler, O., & Hosticka, B. J. (1995). Unsupervised texture 
segmentation of images using tuned matched Gabor filters. IEEE Transactions 
on Image Processing, 4(6), 863-870. 

Unser, M. (1995). Texture classification and segmentation using Wavelet frames. 
IEEE Transactions on Image Processing, 4(11), 1549-1560. 

Wilson, R. (1987). Finite prolate spheroidal sequences and their application I: 
generation and properties. IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 9(6), 787-795. 

Wilson, R., & Spann, M. (1988). Finite prolate spheroidal sequences and their 
application II: image feature description and segmentation. IEEE Transactions 
on Pattern Analysis and Machine Intelligence, 10(2), 193-203. 

Ling-Ling Wang received a B.S., M.S., and Ph.D. 
degrees in Computer Science and Information Engineering 
from National Chiao Tung University, Hsinchu, Taiwan, 
ROC in 1984, 1986, and 1990, respectively. 

From 1986 to 1987, she was an associate engineer in 
the System Software Department of ERSO, ITRI, Hsinchu, 
Taiwan. From 1991 to 1997, she was an associate 
professor of Computer Science at National Tsing Hua 
University, Taiwan. Currently, she is a professor of 
Information Communication at Asia University, Taichung, 
Taiwan. Her current research is in image processing, 

pattern recognition, computer vision, and artificial intelligence. 
 




