Circulant Graphs $G(n, k)$ Are k-Hamiltonian When $k = 4$

Shih-Yan Chena, Tung-Yang Hob, and Shin-Shin Kaoc*

a,c Department of Applied Mathematics
Chung Yuan Christian University,
Chungli City, Taiwan 320, R.O.C.
ayan@blsh.tp.edu.tw, cskao@math.cycu.edu.tw

bDepartment of Industrial Engineering and Management
Ta Hwa Institute of Technology,
Hsinchu, Taiwan 307, R.O.C.
hoho@thit.edu.tw

Abstract

Let G be a graph. For a positive integer k, the k-th power G^k of G is the graph having the same vertex set as G such that any two vertices u and v are adjacent in G^k if and only if the distance between u and v in G is at most k. A graph G is k-hamiltonian if $G - S$ is hamiltonian for any set $S \subset V(G) \cup E(G)$ with $|S| = k$. The graph $G(n, k)$ is the $((k/2) + 1)$-power $C_n^{(k/2)+1}$ of the cycle C_n of order n if k is even, and is the graph obtained from $C_n^{(k+1)/2}$ by adding all or part of the diameters if k is odd. Sung et al.
[1] proved that $G(n, k)$ is k-hamiltonian with $k = 2$ and 3. In this paper, we show that $G(n, k)$ is k-hamiltonian for $k = 4$.

Keywords: hamiltonian, hamiltonian connected, circulant graph.

1 Introduction

In this paper, all graphs are undirected and simple. The sets of vertices and edges of a graph G are denoted by $V(G)$ and $E(G)$, respectively. If $u, v \in V(G)$ and $e = (u, v) \in E(G)$ is an edge between u and v, then we say that the vertices u and v are adjacent in G, the edge e is incident with u and v, and u (or v) is an endvertex of e. A path P between two vertices v_0 and v_k is represented by $P = \langle v_0, v_1, \ldots, v_k \rangle$, where each pair of consecutive vertices are connected by an edge. We also write the path $P = \langle v_0, v_1, \ldots, v_k \rangle$ as $\langle v_0, v_1, \ldots, v_i, Q, v_j, v_{j+1}, \ldots, v_k \rangle$, where Q denotes the path $\langle v_i, v_{i+1}, \ldots, v_j \rangle$. A path in G is called a hamiltonian path of G if it visits every vertex of G exactly once. A cycle is a path of at least three vertices such that the first vertex is the same as the last vertex. A cycle containing all the vertices of a graph G is said to be a hamiltonian cycle of G. A graph G containing a hamiltonian cycle is called a hamiltonian graph.
A graph G is k-hamiltonian if $G - S$ is hamiltonian for any set $S \subseteq V(G) \cup E(G)$ with $|S| = k$. In particular, a graph G is said to be k-vertex hamiltonian (resp. k-edge hamiltonian) if $G - S$ is hamiltonian for any set $S \subseteq V(G)$ (resp. $S \subseteq E(G)$) with $|S| = k$.

For a positive integer k, the k-th power G^k of G is the graph having the same vertex set as G such that any two vertices u and v are adjacent in G^k if and only if the distance between u and v in G is at most k. A graph G is a circulant graph with the distance sequence (d_1, d_2, \ldots, d_k) if $V(G) = \{v_0, v_1, \ldots, v_{n-1}\}$ and $E(G) = \{(v_i, v_j) \mid (i - j) \mod n = d_i\}$, for all $1 \leq i \leq k, 0 \leq i, j \leq n - 1$.

The graph $G(n, k)$ is the $(\frac{k}{2} + 1)$-power $C_n^{\frac{k}{2}+1}$ of the cycle C_n of order n if k is even, and is the graph obtained from $C_n^{\frac{k}{2}+1}$ by adding all or part of the diameters if k is odd. More precisely, given two positive integers n and k with $n > 2k$, $V(G(n, k)) = \{v_0, v_1, \ldots, v_{n-1}\}$ and the vertices v_i's are arranged clockwise with ascending order of the indices. If k is even, $G(n, k)$ is defined as a circulant graph with the distance sequence $\{1, 2, \ldots, \frac{k}{2} + 1\}$. If k is odd and n is even, $G(n, k)$ is defined as a circulant graph with the distance sequence $\{1, 2, \ldots, \frac{k+1}{2}, \frac{n}{2}\}$. Otherwise, $G(n, k)$ is not a circulant graph but has edge set $\{(v_i, v_{i+j}) \mid 0 \leq i \leq n - 1$ and $1 \leq j \leq \frac{k+1}{2}\} \cup \{(v_i, v_{i+n+j}) \mid 0 \leq i \leq \frac{n-3}{2}\} \cup \{(v_0, v_{\frac{n}{2}+1}\}$. Some examples of $G(n, k)$ are depicted in Figure 1.

There has been a lot of investigation on the hamiltonicity of $G(n, k)$. For example, M. Paoli, C.K. Wong and W.W. Wong [2, 3] showed that $G(n, k)$ is k-vertex hamiltonian and k-edge hamiltonian for every k. In [1], Sung et al. confirmed the k-hamiltonicity of $G(n, k)$ with $k = 2$ and 3. They also conjectured that $G(n, k)$ is k-hamiltonian for every k. The goal of this paper is to show that $G(n, k)$ is k-hamiltonian for $k = 4$.

2 Preliminaries

We state some useful results in this section. Throughout this section, we let $P_n = \langle v_0, v_1, \ldots, v_{n-1}\rangle$ be a path of order n.

Theorem 1. [3] The graph $G(n, k)$ is k-vertex hamiltonian and k-edge hamiltonian for every k is even.

Theorem 2. [2] The graph $G(n, k)$ is k-vertex hamiltonian and k-edge hamiltonian for every k is odd.

Theorem 3. [1] The graphs $G(n, 2)$ and $G(n, 3)$ are 2-hamiltonian and 3-hamiltonian, respectively.

Theorem 4. [4] If G is a connected graph, then G^k is $(k - 2)$-edge hamiltonian if $k \geq 3$ and $|V(G)| \geq k + 1$. Therefore, the cube P_n^3 of a path P_n is 1-edge hamiltonian if $n \geq 4$.

![Figure 1: Examples of $G(n, k)$.](image-url)
Theorem 5.

\[v_i = 1 \]

for \(i \geq 2. \)

Lemma 3.

Let \(S \subset \{ v_0, v_{n-1} \} \) be a hamiltonian path with endvertices \(v_0 \) and \(v_{n-1} \). According to Lemma 3 and Theorem 5, it suffices to consider the case when \(n \) is composed of one vertex and one edge. Let \(S = \{ v, e \} \), where \(v \in (V(P^3_n) - \{ v_0, v_{n-1} \}) \) and \(e \in E(P^3_n) \) is not incident to \(v \). Note that \(P^3_{n-1} \) is a subgraph of \(P^3_n - \{ v \} \). Therefore, by Lemma 2, \(P^3_n - \{ v, e \} \) has a hamiltonian path with endvertices \(v_0 \) and \(v_{n-1} \).

Corollary 1.

Let \(n \geq 6. \) Then \(P^3_n - S \) has a hamiltonian path with endvertices \(v_0 \) and \(v_{n-1} \) for \(S \subset (V(P^3_n) - \{ v_0, v_{n-1} \}) \cup E(P^3_n) \) with \(|S| \leq 2. \)

Proof.

According to Lemma 3 and Theorem 5, it suffices to consider the case when \(S \) is composed of one vertex and one edge. Let \(S = \{ v, e \} \), where \(v \in (V(P^3_n) - \{ v_0, v_{n-1} \}) \) and \(e \in E(P^3_n) \) is not incident to \(v \). Note that \(P^3_{n-1} \) is a subgraph of \(P^3_n - \{ v \} \). Therefore, by Lemma 2, \(P^3_n - \{ v, e \} \) has a hamiltonian path with endvertices \(v_0 \) and \(v_{n-1} \).

3. The 4-Hamiltonicity of \(G(n, 4) \)

Theorem 6.

The graph \(G(n, 4) \) is 4-hamiltonian for \(n \geq 9. \)

Proof.

Let \(S \subset V(G(n, 4)) \cup E(G(n, 4)) \) with \(|S| = 4. \) We want to prove that there exists a hamiltonian cycle in \(G(n, 4) - S \). According to Theorem 1, \(G(n, 4) - S \) is hamiltonian for \(S \subset V(G(n, 4)) \) or \(S \subset E(G(n, 4)) \). Hence it suffices to consider the remaining three cases.

Case 1.

\(S \) is composed of three vertices and one edge. Without loss of generality, we assume that the three removed vertices are...
$v_0, v_i,$ and v_j with $0 < i < j$ and $i \leq j - i \leq n - j$.

Case 1.1. $j \geq 3$. Since $n - 2 \geq 7$, $G(n - 2, 2)$ is a subgraph of $G(n, 4) - \{v_0, v_j\}$. By Theorem 3, $G(n - 2, 2)$ is a 2-hamiltonian graph. Thus $G(n, 4) - S$ is hamiltonian.

Case 1.2. $j = 2$. Note that $i = 1$. The remaining graph after the removal of the vertices v_0, v_1, and v_2 of $G(n, 4)$ is isomorphic to the graph P^3_{n-3}. By Theorem 4, P^3_{n-3} is 1-edge hamiltonian. Thus $G(n, 4) - S$ is hamiltonian.

Case 2. S is composed of two vertices and two edges. Without loss of generality, we assume that $\{v_0, v_1\} \subset S$, where $1 \leq i \leq \lfloor \frac{n}{2} \rfloor$.

Case 2.1. $i \geq 3$. Note that $G(n - 2, 2)$ is a subgraph of $G(n, 4) - \{v_0, v_1\}$. Since $n - 2 \geq 7$ and by Theorem 3, $G(n - 2, 2)$ is a 2-hamiltonian graph. Thus $G(n, 4) - S$ is hamiltonian.

Case 2.2. $i = 2$. The remaining graph after the removal of v_0 and v_2 of $G(n, 4)$ is depicted in Figure 2. Let G' be the subgraph of G induced by $\{v_3, v_4, \ldots, v_{n-1}\}$. Obviously, G' is isomorphic to P^3_{n-3}.

Case 2.2.1. $|\{(v_3, v_1), (v_1, v_{n-1})\} \cap S| = 0$. By Theorem 5, G' has a hamiltonian path Q_1 with endvertices v_3 and v_{n-1} after removing any two edges. Thus, $(v_3, Q_1, v_{n-1}, v_1, v_3)$ is the hamiltonian cycle of $G(n, 4) - S$.

Case 2.2.2. $|\{(v_1, v_3), (v_1, v_{n-1})\} \cap S| = 2$. $(v_1, v_4, v_3, v_5, \ldots, v_{n-3}, v_{n-1}, v_n, v_1)$ is the hamiltonian cycle of $G(n, 4) - S$.

Case 2.2.3. $|\{(v_1, v_3), (v_1, v_{n-1})\} \cap S| = 1$. Without loss of generality, we assume that $(v_1, v_{n-1}) \in S$. Suppose that $(v_1, v_{n-2}), (v_{n-1}, v_{n-2}) \cap S = \emptyset$. By Corollary 1, $G' - \{v_{n-2}\}$ has a hamiltonian path Q_2 with endvertices v_3 and v_{n-1} after removing any one edge. Thus $(v_3, Q_2, v_{n-1}, v_{n-2}, v_1, v_3)$ is the hamiltonian cycle of $G(n, 4) - S$. Suppose that $(v_1, v_{n-2}) \in S$. P^3_{n-3} is the subgraph of G'. By Lemma 1, there exists a hamiltonian path Q_3 of G' with endvertices v_3 and v_4. Thus $(v_4, v_1, v_3, Q_3, v_4)$ is the required cycle. Suppose that $(v_{n-1}, v_{n-2}) \in S$, $(v_1, v_3, \ldots, v_{n-4}, v_{n-1}, v_{n-3}, v_{n-2}, v_1)$ is the required cycle.

Case 2.3. $i = 1$. The remaining graph after the removal of v_0 and v_1 of $G(n, 4)$ is depicted in Figure 3. Suppose that $(v_{n-1}, v_2) \in S$. $G(n, 4) - \{v_0, v_1, (v_{n-1}, v_2)\}$ is isomorphic to P^3_{n-2} which is 1-edge hamiltonian. Hence, the remaining graph after removing any one edge from $G(n, 4) - \{v_0, v_1, (v_{n-1}, v_2)\}$ contains a hamiltonian cycle. Suppose that $(v_{n-1}, v_2) \notin S$. Since the graph $G(n, 4) - \{v_0, v_1, (v_{n-1}, v_2)\}$ is isomorphic to P^3_{n-2}, it has a hamiltonian path Q_1 with endvertices v_2 and v_{n-1} after removing any two edges. Thus,
(v_2, Q_4, v_{n-1}, v_2) is the required cycle.

Figure 4: $G'' = G(n, 4) - \{v_{n-1}\}$.

Case 3. S is composed of one vertex and three edges. Without loss of generality, we assume that $v_{n-1} \in S$. The graph $G(n, 4) - \{v_{n-1}\}$ is depicted in Figure 4. Let $G'' = G(n, 4) - \{v_{n-1}\}$. In this case, all the addition and subtraction are carried with modulo $n - 1$. Let $E(G'') = A_1 \cup A_2 \cup A_3$, where $A_i = \{(v_i, v_j) \in E(G')|j = i + l\}$. Let $S_i = S \cap A_i$ for $i = 1, 2, 3$.

Suppose that $S_3 \neq \emptyset$. For any edge $e \in S_3$, $G(n - 1, 2)$ is a subgraph of $G'' - \{e\}$. By Theorem 3, there exists a hamiltonian cycle after removing any two edges. Now, we assume that $S_3 = \emptyset$. We consider the remaining cases in the following:

Case 3.1. $|S_2| = 3$. Cycle $(v_0, v_1, \ldots, v_{n-2}, v_0)$ is the required cycle.

Case 3.2. $|S_1| = 1$. Note that $|S_2| = 2$. If $(v_{n-2}, v_0) \notin S_1$, without loss of generality, we suppose that $S_1 = \{(v_i, v_{i+1})\}$, where $0 \leq i \leq \lfloor \frac{n-3}{2} \rfloor$. Thus $(v_0, v_1, v_2, v_3, v_{n-2}, v_0)$ is a hamiltonian cycle of $G(n, 4) - S$. Next, we consider the case that $(v_{n-2}, v_0) \in S_1$ in the following two subcases.

Case 3.2.1. $\{(v_{n-3}, v_0), (v_{n-2}, v_1)\} \cap S_2 \geq 1$. Note that $G'' - \{(v_{n-2}, v_0), (v_{n-3}, v_0), (v_{n-2}, v_1)\}$ is isomorphic to P^3_{n-1} and P^3_{n-1} is 1-edge hamiltonian. Thus $G(n, 4) - S$ is hamiltonian.

Case 3.2.2. $\{|(v_{n-3}, v_0), (v_{n-2}, v_1)\} \cap S_2 = 0$. If $\{|(v_0, v_2), (v_{n-2}, v_0)\} \cap S_2 = 2$, then $(v_0, v_2, v_3, v_2, v_1, \ldots, v_{n-2}, v_1, v_0)$ is the required cycle. Otherwise, $\{|(v_0, v_2), (v_{n-4}, v_{n-2})\} \cap S_2 \leq 1$. Without loss of generality, we assume that $(v_0, v_2) \notin S_2$. Thus $(v_0, v_2, \ldots, v_{n-2}, v_1, v_0)$ is the required cycle.

Case 3.3. $|S_1| = 2$. Note that $|S_2| = 1$.

Case 3.3.1. The two edges in S_1 are adjacent. Assume that $S_1 = \{(v_{i-1}, v_i), (v_i, v_{i+1})\}$, where $0 \leq i \leq \lfloor \frac{n-2}{2} \rfloor$. $(v_{i-1}, v_i, v_{i+1}, v_{i+2}, v_i, v_{i+3}, \ldots, v_{i-1})$ is the required cycle if $\{|(v_{i+1}, v_{i+2}), (v_i, v_{i+1})\} \cap S_2 = 0$; $(v_{i-1}, v_{i+2}, v_i, v_{i+1}, v_j, v_{j-1}, v_{j+1}, \ldots, v_i)$ is the required cycle if otherwise.

Case 3.3.2. The two edges in S_1 are not adjacent.

Case 3.3.2.1. $(v_{n-2}, v_0) \notin S_1$. Without loss of generality, we assume that $S_1 = \{(v_{i-1}, v_i), (v_j, v_{j+1})|1 \leq i < j \leq n - 3\}$. When $j - i = 4$, $(v_{i-1}, v_{i+1}, v_i, v_{j-1}, v_j, v_{j-2}, v_j, v_{j+1}, \ldots, v_{i-1})$ is the required cycle if $\{|(v_{i-1}, v_{i+1}), (v_j, v_{j+1})\} \cap S_2 = 0$; $(v_{i-1}, v_{i+2}, v_i, v_{i+1}, v_j, v_{j-1}, v_{j+1}, \ldots, v_i)$ is the required cycle if otherwise. When $j - i \geq 1$ and $j - i \neq 4$, the corresponding hamiltonian cycles listed in Table 2. Note that when $j - i = 1$, we assume that $1 \leq i \leq \lfloor \frac{n-3}{2} \rfloor$.

Case 3.3.2.2. $(v_{n-2}, v_0) \in S_1$. Without loss of generality, we assume that the other edge in S_1 is (v_i, v_{i+1}), where $1 \leq i \leq \lfloor \frac{n-3}{2} \rfloor$. When $i = 1$, $(v_0, v_2, \ldots, v_{n-2}, v_1, v_0)$ is the required cycle if $\{|(v_{n-2}, v_1), (v_0, v_2)\} \cap S_2 = 0$, and $(v_0, v_1, v_3, v_2, v_1, \ldots, v_{n-4}, v_{n-2}, v_{n-3}, v_0)$ is the required cycle if otherwise. When $2 \leq i \leq \lfloor \frac{n-3}{2} \rfloor$, $(v_0, \ldots, v_i, v_{i+3}, v_{i+2}, v_i, v_{i+4}, \ldots, v_{n-2}, v_{n-3}, v_0)$ is the required cycle if otherwise.
Case 3.4. $|S_1| = 3$.

Case 3.4.1. $|V(G'')|$ is odd. $(v_1, v_3, v_5, \ldots, v_{n-5}, v_{n-3}, v_0, v_2, v_4, \ldots, v_{n-4}, v_{n-2}, v_1)$ is the required cycle.

Case 3.4.2. $|V(G'')|$ is even. Since $n \geq 9$ and $|S_1| = 3$, there exists an index i such that $\{(v_i, v_{i+1}), (v_{i+2}, v_{i+3})\} \cap S_1 = \emptyset$. Thus, $(v_{i+2}, v_{i+4}, v_{i+6}, \ldots, v_{i-4}, v_{i-2}, v_{i+1}, v_{i-1}, v_{i-3}, v_{i-5}, \ldots, v_{i+5}, v_{i+3}, v_{i+2})$ is the required cycle. □

References

