ASIA unversity:Item 310904400/111487
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 90570/105786 (86%)
造访人次 : 16378932      在线人数 : 295
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    ASIA unversity > 管理學院 > 經營管理學系  > 期刊論文 >  Item 310904400/111487


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/111487


    题名: Rule Generation based on Novel Kernel Intuitionistic Fuzzy Rough Set Model
    作者: 林國平;Lin, Kuo-Ping;*;Hung, K.-C.;Hung, K.-C.;Lin, C.-L.;Lin, C.-L.
    贡献者: 經營管理學系
    日期: 2018-02
    上传时间: 2018-10-09 13:41:22 (UTC+8)
    摘要: This paper develops a novel kernel intuitionistic fuzzy rough set (KIFRS) model as a hybrid model to improve the effects of rule generation based on rough sets. The KIFRS model adopts new kernel intuitionistic fuzzy clustering (KIFCM) to enhance the performance of rough set theory (RST). To effectively improve the rule generation based on RST, the proposed hybrid method first adopts KIFCM to cluster raw data into similarity groups. Based on the KIFCM results, the RST can obtain superior performance in generating rules. Two benchmark machine learning data sets from the UCI machine learning repository are used to examine the performance of the developed model. The results show that the KIFRS model achieves superior performance to those of the traditional decision tree and rough set models.
    關聯: IEEE Access
    显示于类别:[經營管理學系 ] 期刊論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML201检视/开启


    在ASIAIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈