ASIA unversity:Item 310904400/111661
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 92324/107581 (86%)
造访人次 : 18297028      在线人数 : 653
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    题名: Vehicle Verification Between Two Nonoverlapped Views Using Sparse Representation
    作者: 徐士中;Hsu, Shih-Chung;張意政;Chang, I-Cheng;黃仲陵;Huang, Chung-Lin
    贡献者: 行動商務與多媒體應用學系
    日期: 2018-09
    上传时间: 2018-12-24 17:17:41 (UTC+8)
    摘要: Vehicle verification in different scenes is a nontrivial problem that cannot be solved by simple correspondence matching. In the paper, the verification problem is treated as a binary classification problem. If the two vehicles in two views are the same, they are a positive pair; otherwise, a negative pair. Here, we propose an effective sparse representation (SR) method called Boost K-SVD to generate the feature vectors for vehicle representation. In Boost K-SVD, the particle filtering is first applied for the initial atom selection. Then, it finds the atoms satisfying the restricted isometry property (RIP). Finally, we propose a discrimination criterion to determine the optimal dictionary size. Instead of initial random atom selection, Boost K-SVD generates the atoms incrementally to create a more compact dictionary. Furthermore, the dictionary with RIP can produce sparser representation vectors with higher verification accuracy. Experimental results show that our method has better performance compared with the other methods.
    显示于类别:[行動商務與多媒體應用學系] 期刊論文


    档案 大小格式浏览次数


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈