ASIA unversity:Item 310904400/111670
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 90570/105786 (86%)
造访人次 : 16405257      在线人数 : 187
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    ASIA unversity > 護理學院 > 護理學系 > 期刊論文 >  Item 310904400/111670


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/111670


    题名: Determination and Prediction of Respirable Dust and Crystalline-Free Silica in the Taiwanese Foundry Industry
    作者: CT, Kuo;CT, Kuo;FF, Chiu;FF, Chiu;鮑柏穎;Bao, Bo-Ying;TY, Chang;TY, Chang
    贡献者: 護理學系
    日期: 2018-09
    上传时间: 2018-12-24 17:25:41 (UTC+8)
    摘要: Background: Respirable crystalline silica (RCS) has been recognized as a human carcinogen; however, the measurement and analysis of RCS in small-scale foundries is rare and difficult. This study aimed to measure respirable dust and RCS levels among 236 foundry workers in Taiwan and used these data to establish predictive models for personal exposure. Methods: Personal sampling of various production processes were measured gravimetrically and analyzed using the X-ray diffraction method. Multiple linear regression was used to establish predictive models. Results: Foundry workers were exposed to geometric means and geometric standard deviations of 0.52 ± 4.0 mg/m³ and 0.027 ± 15 mg/m³ for respirable dust and RCS, respectively. The highest exposure levels were observed among workers in the sand blasting process, with geometric means of 1.6 mg/m³ and 0.099 mg/m³ for respirable dust and RCS, respectively. The predictive exposure model for respirable dust fitted the data well (R² = 0.75; adjusted R² = 0.64), and the predictive capacity for RCS was higher (R² = 0.89; adjusted R² = 0.84). Conclusions: Foundry workers in the sand blasting process may be exposed to the highest levels of respirable dust and RCS. The developed models can be applied to predict respirable dust and RCS levels adequately in small-scale foundry workers for epidemiological studies.
    Background: Respirable crystalline silica (RCS) has been recognized as a human carcinogen; however, the measurement and analysis of RCS in small-scale foundries is rare and difficult. This study aimed to measure respirable dust and RCS levels among 236 foundry workers in Taiwan and used these data to establish predictive models for personal exposure. Methods: Personal sampling of various production processes were measured gravimetrically and analyzed using the X-ray diffraction method. Multiple linear regression was used to establish predictive models. Results: Foundry workers were exposed to geometric means and geometric standard deviations of 0.52 ± 4.0 mg/m³ and 0.027 ± 15 mg/m³ for respirable dust and RCS, respectively. The highest exposure levels were observed among workers in the sand blasting process, with geometric means of 1.6 mg/m³ and 0.099 mg/m³ for respirable dust and RCS, respectively. The predictive exposure model for respirable dust fitted the data well (R² = 0.75; adjusted R² = 0.64), and the predictive capacity for RCS was higher (R² = 0.89; adjusted R² = 0.84). Conclusions: Foundry workers in the sand blasting process may be exposed to the highest levels of respirable dust and RCS. The developed models can be applied to predict respirable dust and RCS levels adequately in small-scale foundry workers for epidemiological studies.
    Background: Respirable crystalline silica (RCS) has been recognized as a human carcinogen; however, the measurement and analysis of RCS in small-scale foundries is rare and difficult. This study aimed to measure respirable dust and RCS levels among 236 foundry workers in Taiwan and used these data to establish predictive models for personal exposure. Methods: Personal sampling of various production processes were measured gravimetrically and analyzed using the X-ray diffraction method. Multiple linear regression was used to establish predictive models. Results: Foundry workers were exposed to geometric means and geometric standard deviations of 0.52 ± 4.0 mg/m3 and 0.027 ± 15 mg/m3 for respirable dust and RCS, respectively. The highest exposure levels were observed among workers in the sand blasting process, with geometric means of 1.6 mg/m3 and 0.099 mg/m3 for respirable dust and RCS, respectively. The predictive exposure model for respirable dust fitted the data well (R2 = 0.75; adjusted R2 = 0.64), and the predictive capacity for RCS was higher (R2 = 0.89; adjusted R2 = 0.84). Conclusions: Foundry workers in the sand blasting process may be exposed to the highest levels of respirable dust and RCS. The developed models can be applied to predict respirable dust and RCS levels adequately in small-scale foundry workers for epidemiological studies.
    關聯: International Journal of Environmental Research and Public Health
    显示于类别:[護理學系] 期刊論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML191检视/开启


    在ASIAIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈