ASIA unversity:Item 310904400/111692
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 90570/105786 (86%)
造访人次 : 16375990      在线人数 : 296
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    ASIA unversity > 管理學院 > 經營管理學系  > 期刊論文 >  Item 310904400/111692


    题名: Application of Multi-Species Differential Evolution Algorithm in Sustainable Microgrid Model
    作者: Zhang, H.-J.;Zhang, H.-J.;Feng, Y.-B.;Feng, Y.-B.;林國平;Lin, Kuo-Ping
    贡献者: 管理學院經營管理學系
    日期: 2018-08
    上传时间: 2018-12-25 10:50:20 (UTC+8)
    摘要: The safety and stability of microgrid (MG) operations are closely related to the capacity of distributed energy resources. A conventional MG model usually adopts investment cost as an objective function. Recently, the issue of environmental protection has been gradually emphasized. Therefore, the objective function of the proposed sustainable microgrid (SMG) model in this study considers the investment cost and environmental protective cost and the decision variable is the capacity of the distributed power. Moreover, weather and electric power load data from the National Centers for Environmental Information database (2010) were analyzed in Matlab program for the case study of Alabaster city, United States of America (USA). For the sake of a stable and economical SMG operation, this study also attempts to use a multi-objective capacity optimal model for effectively solving SMG under a multi-population differential evolution (MPDE) algorithm with dominant population (DP), which can improve the convergence speed in an SMG model. At the same time, considering that different scheduling strategies will also affect the optimization results, two strategies are proposed for the priority order of distributed generation sources. The optimization results under the two scheduling strategies show that the validation of the MPDE algorithm in SMG capacity optimization problems can economize investment costs and enable an environmentally friendly power supply.
    關聯: Sustainability
    显示于类别:[經營管理學系 ] 期刊論文


    档案 大小格式浏览次数


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈