ASIA unversity:Item 310904400/111753
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 90570/105786 (86%)
造访人次 : 16405220      在线人数 : 190
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    ASIA unversity > 管理學院 > 經營管理學系  > 期刊論文 >  Item 310904400/111753


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/111753


    题名: Using Internet search trends and historical trading data for predicting stock markets by the least squares support vector regression model
    作者: Pa, Ping-Feng;Pai, Ping-Feng;*;Ling-Chuang;Hong, Ling-Chuang;林國平;Lin, Kuo-Ping
    贡献者: 經營管理學系
    日期: 2018-07
    上传时间: 2018-12-25 16:11:42 (UTC+8)
    摘要: Historical trading data, which are inevitably associated with the framework of causality both financially and theoretically, were widely used to predict stock market values. With the popularity of social networking and Internet search tools, information collection ways have been diversified. Instead of only theoretical causality in forecasting, the importance of data relations has raised. Thus, the aim of this study was to investigate performances of forecasting stock markets by data from Google Trends, historical trading data (HTD), and hybrid data. The keywords employed for Google Trends are collected from three different ways including users’ definitions (GTU), trending searches of Google Trends (GTTS), and tweets (GTT) correspondingly. The hybrid data include Internet search trends from Google Trends and historical trading data. In addition, the correlation-based feature selection (CFS) technique is used to select independent variables, and one-step ahead policy is adopted by the least squares support vector regression (LSSVR) for predicting stock markets. Numerical experiments indicate that using hybrid data can provide more accurate forecasting results than using single historical trading data or data from Google Trends. Thus, using hybrid data of Internet search trends and historical trading data by LSSVR models is a promising alternative for forecasting stock markets.
    關聯: Computational Intelligence and Neuroscience
    显示于类别:[經營管理學系 ] 期刊論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML176检视/开启


    在ASIAIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈