ASIA unversity:Item 310904400/112038
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 90074/105197 (86%)
造访人次 : 7151292      在线人数 : 39
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    ASIA unversity > 管理學院 > 經營管理學系  > 期刊論文 >  Item 310904400/112038


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/112038


    题名: Enhancing the Lithium-ion battery life predictability using a hybrid method
    作者: Ling-Ling Li;Zhi-Feng Liu;Ming-Lang Tseng;Anthony S.F. Chiu
    贡献者: 經營管理學系
    日期: 2019-01
    上传时间: 2019-09-18 10:20:15 (UTC+8)
    摘要: This study contributes to proposing the improved bird swarm algorithm optimization least squares support vector machine (IBSA-LSSVM) model to predict the remaining life of lithium-ion batteries. By improving the prediction accuracy of the model, the safety and reliability of the new energy storage system are improved. In order to avoid the bird swarm algorithm (BSA) getting into the local optimal solution, the levy flight strategy is introduced into the improved bird swarm algorithm (IBSA), which improves the convergence performance of the algorithm. Hence, this study is to verify the effectiveness of the proposed hybrid IBSA-LSSVM model. The following work has been done: (1) test functions are used to test particle swarm optimization (PSO), differential evolution algorithm (DE), BSA and IBSA; (2) the back propagation neural network (BP) model, support vector machine (SVM) model, quantum particle swarm optimization support vector machine (QPSO-SVM) model, BSA-LSSVM model and IBSA-LSSVM model are tested with the B5, B6 and B18 batteries. The following findings are obtained: (1) the five test functions are used to test the PSO, DE, BSA and IBSA algorithms in 20 dimensions, 50 dimensions and 80 dimensions. The results show that the convergence accuracy and convergence stability of IBSA algorithm is higher than those of the other three algorithms; (2) the residual life of B5, B6 and B18 batteries are predicted by the BSA-LSSVM, SVM, QPSO-SVM, BP and IBSA-LSSVM models. The test results show that the root mean square error of the IBSA-LSSVM model for B5 battery is 0.01, the root mean square error for B6 battery is 0.06, and the root mean square error for B18 battery is 0.02. The results show that the prediction accuracy of proposed model is higher than that of the other models.
    關聯: APPLIED SOFT COMPUTING
    显示于类别:[經營管理學系 ] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML20检视/开启


    在ASIAIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈