English  |  正體中文  |  简体中文  |  Items with full text/Total items : 90453/105672 (86%)
Visitors : 13154962      Online Users : 639
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://asiair.asia.edu.tw/ir/handle/310904400/112070

    Title: Three-dimensional dose comparison of flattening filter (FF) and flattening filter-free (FFF) radiation therapy by using NIPAM gel dosimetry
    Authors: 姚俊旭;Yao, Chun-Hsu;Cha, Tung-Hao;Chang, Tung-Hao;Lin, Chia-Chi;Lin, Chia-Chi;La, Yuan-Chun;Lai, Yuan-Chun;Chin-Hsing, Chin-Hsing C;Chen, Chin-Hsing;Cha, Yuan-Jen;Chang, Yuan-Jen
    Contributors: 生物資訊與醫學工程學系
    Date: 2019-02
    Issue Date: 2019-09-18 11:17:32 (UTC+8)
    Abstract: Intensity-modulated radiotherapy and volumetric modulated arc therapy are modern radiation therapy technologies that can create the desired dose distribution by multileaf collimator movement and dose-rate control. However, the homogeneous dose delivery of small-field irradiation techniques shows disagreement with that of treatment planning system. The removal of the flattening filter by flattening filter free (FFF) beam irradiation increases dose conformity and further reduces treatment delivery time in radiosurgery. This study aims to investigate the dose distribution of FFF and flattened beams for small-field irradiation by using the 3D gel dosimeter. The N-isopropylacrylamide (NIPAM) polymer gel dosimeter was employed to record the 3D dose distribution. In addition, flattened and FFF beams were compared using the gamma evaluation technique. The use of an FFF accelerator resulted in excellent radiation treatments with short delivery times and low doses to normal tissues and organs. Results also showed that the passing rate increased with the decrease of field size (30 × 30, 20 × 20, and 10 × 10 mm2) at post-irradiation times of 24, 48, 72, and 96 h. The passing rates for each field size were retained at the same level when gamma criteria, namely, distance-to-agreement (DTA) = 3 mm/dose difference (DD) = 3%, were used. Nevertheless, the passing rates for each field size decreased slowly after 48 h when DTA = 2 mm/DD = 2%. The Wilcoxon signed-rank test was used to determine statistical difference with a significant level of p < 0.05. The passing rates of flattened and FFF beams showed no significant difference. The edge enhancement effect in the flattened beam was more evident than in the FFF beam. The 3D NIPAM gel dosimeter can be used for dose verification of small field for radiation therapy with high dose rate.
    Relation: PLoS One
    Appears in Collections:[生物資訊與醫學工程學系 ] 期刊論文

    Files in This Item:

    File Description SizeFormat

    All items in ASIAIR are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback