English  |  正體中文  |  简体中文  |  Items with full text/Total items : 90069/105176 (86%)
Visitors : 6602952      Online Users : 596
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    ASIA unversity > 管理學院 > 經營管理學系  > 博碩士論文 >  Item 310904400/112488


    Please use this identifier to cite or link to this item: http://asiair.asia.edu.tw/ir/handle/310904400/112488


    Title: 減輕餐廳爽約策略之效果研究
    Strategies of Mitigating Customer’s No-shows at Restaurants
    Authors: 李國賓
    LI, KUO-PIN
    Contributors: 經營管理學系
    Keywords: 爽約;重新劃位;超額劃位;限制劃位;爽約罰金
    No-show;Reoffering seats;Overbooking;Partial reservations;No-show penalties
    Date: 2019
    Issue Date: 2019-11-12 09:24:44 (UTC+8)
    Publisher: 亞洲大學
    Abstract: 本研究的目的是分析餐廳為減輕客戶爽約所採行的各種預約策略,以實證方式進行驗證餐廳採行減輕客戶爽約策略的效果;有別於許多研究大多是從服務品質探討餐廳收入管理的問題,或者以理論性的模型分析如何以超售的方式增加收入,而過去Alexandrov & Lariviere (2012)的研究則以推導模型方式建立「重新劃位」、「超額劃位」、「限制劃位」、「爽約罰金」等策略分析如何減輕客戶爽約。而本研究先透過文獻探討分析國內外有關餐廳預約策略採行方式的理論與實務,並輔以專家深度訪談方式進行,歸納訪談結果提出「重新劃位」、「超額劃位」、「限制劃位」、「爽約罰金」等四種預約策略以建立構念和發展題項,經過專家學者修正及項目分析進行題項的篩選與確認,建立初步的量表架構與測量題項,以發展出減輕餐廳爽約策略之評估量表,這也是過去研究從未嘗試的方法。之後即以餐廳的主管階層做為發放調查對象,較能以公司採行預約策略之實際狀況回應本研究。
    本研究收集66家餐廳的有效問卷66份,回收問卷後進行階層迴歸分析處理。研究過程依餐廳的規模型態考量餐廳「座位數」及「價格」因素,研究結果顯示餐廳同時採取四種預約策略時,以「重新劃位」、「限制劃位」、「爽約罰金」都可有效減輕客戶爽約程度,且因為不同的餐廳的座位數、餐廳的平均客單價等經營規模因素,也會產生不同的影響效果。「超額劃位」則是受到餐廳座位數的交互作用而對減輕客戶爽約程度產生不同的影響,這也驗證Alexandrov & Lariviere (2012)研究中提到超額預訂政策的複雜性。
    The purpose of this research paper is to analyze the reservation strategies adopted by the restaurant to Strategies of Mitigating Customer’s No-shows at Restaurants, and to verify the effect of the restaurant's adoption of the Customer’s No-shows strategy ; unlike many studies, the issue of restaurant revenue management is mostly discussed from the quality of service, or A theoretical model analyzes how to increase income by overbooking. In the past, Alexandrov & Lariviere (2012) research used the model to build "Re-offering seats", "Overbooking", "Partial reservations", and "No-show penalties", analyze how to mitigating No-show. This study explores the theory and practice of the adoption methods of restaurant reservation strategies at home and abroad through the literature, and conducts in-depth interviews with experts. The results of the interviews suggest "Re-offering seats", "Overbooking", "Partial reservations", and "No-show penalties" four kinds of reservation strategies. Developed an assessment scale to strategies mitigating of customer’s No-show. This is also the method that past research has never tried. After that, the management of the restaurant was used as the object of investigation, and the study was more able to respond to the actual situation of the restaurant's reservation strategies.
    In this study, 66 valid questionnaires were collected from 66 restaurants, and the questionnaires were collected and analyzed by hierarchical regression analysis. The research process considers the "seat number" and "price" factors of the restaurant according to the size of the restaurant. The results of the study show that the restaurant adopts four kinds of reservation strategies, with "Re-offering seats", "Partial reservations", and "No-show penalties". It can effectively mitigating for customer’s No-show, and because of the number of seats in different restaurants, the average price of the restaurant and other scale factors, it will have different effects. The “Overbooking” is influenced by the interaction of the number of seats in the restaurant and has a different impact on reducing the customer's No-show. This also confirms the complexity of the overbooking strategy mentioned in the Alexandrov & Lariviere (2012) research.
    Appears in Collections:[經營管理學系 ] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML18View/Open


    All items in ASIAIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback