English  |  正體中文  |  简体中文  |  Items with full text/Total items : 90453/105671 (86%)
Visitors : 15669437      Online Users : 155
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://asiair.asia.edu.tw/ir/handle/310904400/112934

    Title: Roles of p38α and p38β mitogen?activated protein kinase isoforms in human malignant melanoma A375 cells
    Contributors: 醫學檢驗暨生物技術學系
    Date: 2019-12
    Issue Date: 2020-09-04 13:59:40 (UTC+8)
    Publisher: 亞洲大學
    Abstract: Skin cancer is one of the most common cancers worldwide. Melanoma accounts for ~5% of skin cancers but causes the large majority of skin cancer‑related deaths. Recent discoveries have shown that the mitogen‑activated protein kinase (MAPK) signaling pathway is critical for melanoma development and progression. Many oncogenic pathways that cause melanoma tumorigenesis have been identified, most of which are due to RAF/MEK/ERK (MAPK) pathway activation. However, the precise role of p38 remains unclear. Using specific short hairpin (sh) RNA to silence p38α and p38β, the present findings demonstrated that p38α was a crucial factor in regulating cell migration in the A375 melanoma cell line. Silencing p38α downregulated the expression of epithelial‑mesenchymal transition markers, such as matrix metallopeptidase (MMP) 2, MMP9, twist family bHLH transcription factor 1, snail family transcriptional repressor 1 and vimentin, while mesenchymal‑epithelial transition markers, such as E‑cadherin, were upregulated. Of note, the results also demonstrated that p38α silencing impaired vascular endothelial growth factor expression, which regulates tumor angiogenesis. Furthermore, p38α knockdown inhibited cell proliferation in melanoma cells. In addition, silencing p38α induced senescence‑like features, but not cell cycle arrest. Expression of the senescence markers p16, p21, p53 and β‑galactosidase was upregulated, and an increase in the number of senescence‑associated β‑galactosidase‑positive cells was observed in a p38α knockdown stable clone. However, no significant difference was found between control and p38β stable knockdown cells. Taken together, the present results suggested that p38α knockdown impaired migration and proliferation, and increased senescence, in A375 melanoma cells. However, p38β may not be involved in melanoma tumorigenesis. Therefore, targeting p38α may be a valuable approach towards inhibiting tumor growth and metastasis in patients with melanoma.
    Appears in Collections:[醫學檢驗暨生物技術學系] 期刊論文

    Files in This Item:

    File Description SizeFormat

    All items in ASIAIR are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback