English  |  正體中文  |  简体中文  |  Items with full text/Total items : 90451/105768 (86%)
Visitors : 11129562      Online Users : 436
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://asiair.asia.edu.tw/ir/handle/310904400/16084


    Title: Effects of terephthalic acid on rat lipid metabolism.
    Authors: 張竣維;Hebron, C.Chang
    Contributors: 生物科技學系
    Date: 2006
    Issue Date: 2012-11-23 17:08:22 (UTC+8)
    Abstract: OBJECTIVE:
    To study the effect of terephthalic acid (TPA) on lipid metabolism in Sprague-Dawley (SD) rats.
    METHODS:
    Five groups of SD rats that ingested 0%, 0.04%, 0.2%, 1%, and 5% TPA, respectively, were included in a 90-day subchronic feeding study. Effects of TPA on levels of serum protein, total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL), total antioxidative capability (T-AOC), superoxide dismutase (SOD) and malondialdehyde (MDA) were observed. Urine samples were collected and analyzed for concentration of ion.
    RESULTS:
    TPA decreased the level of serum T-AOC in a dose dependent manner. The contents of serum and bladder MDA significantly decreased in 1% and 5% TPA ingestion groups. Serum CuZn superoxide dismutase (CuZnSOD) lowered in groups of 0.2%, 1%, and 5% TPA. TPA subchronic feeding had no significant influences on serum TC, LDL or HDL, but increased serum TG, TP and ALB after administration of 0.04% and/or 0.2% TPA. Concentrations of urinary Ca2+, Mg2+, Na+, and K+ were elevated in 1% and 5% TPA groups.
    CONCLUSION:
    Antioxidative potential decreased after TPA exposure. MDA increase in serum and bladder tissues was one of the most important reactions in rats which could protect themselves against TPA impairment. The decrease of serum CuZnSOD was related to the excretion of Zn2+.
    Relation: BIOMEDICAL AND ENVIRONMENTAL SCIENCES;19(4):273-6.
    Appears in Collections:[生物科技學系] 期刊論文

    Files in This Item:

    There are no files associated with this item.



    All items in ASIAIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback