ASIA unversity:Item 310904400/16086
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 90570/105786 (86%)
Visitors : 16304074      Online Users : 292
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item:

    Title: JWA as a Novel Molecule Involved in Oxidative Stress-Associated Signal Pathway in Myelogenous Leukemia Cells.
    Authors: 張竣維;Hebron, C.Chang
    Contributors: 生物科技學系
    Date: 2006
    Issue Date: 2012-11-23 17:08:23 (UTC+8)
    Abstract: Previous data showed that JWA might be a novel environmental responsive gene regulated by environmental stressors such as heat shock and oxidative stress. However, the molecular mechanism underlying JWA gene function involved in oxidative stress is still unknown. In this study, the potential role of JWA was further investigated in hydrogen peroxide (H2O2) induced DNA damage and cell apoptosis in K562 cells. Series of the oxidative stress models were established to observe if JWA was involved in DNA damage or cell apoptosis induced by H2O2 exposure. These results indicated that the inhibitory effect on K562 cells' viability induced by H2O2 was concentration and time dependent. JWA was more sensitive to H2O2 (0.01 mmol/L) than the heat-shock proteins (hsp70 and hsp27), and its expression pattern was similar to that of hsp70. In addition, JWA, hsp70, hsp27, and p53 were overexpressed and the expression patterns of JWA, hsp70, and p53 were similar during cell apoptosis. H2O2 led to the cleavage and activation of procaspase-3. In conclusion, these results suggested that JWA might be an effective environmental responsive gene that functions as a parallel with hsp70 in oxidative stress-responsive pathways in K562 cells. Like hsp70, JWA might enhance intracellular defenses and function against H2O2-induced oxidative stress in leukemia cells. At the same time, JWA was involved in the p53-associated signal pathways of oxidative stress-induced apoptosis, which is also caspase-3 dependent.
    Appears in Collections:[Department of Biotechnology] Journal Article

    Files in This Item:

    There are no files associated with this item.

    All items in ASIAIR are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback