ASIA unversity:Item 310904400/16211
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 90570/105786 (86%)
造访人次 : 16363299      在线人数 : 321
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    题名: Targeting tyrosine phosphorylation of PCNA inhibits prostate cancer growth
    作者: 洪明奇;Hung, Mien-Chie
    贡献者: 生物科技學系
    日期: 2011
    上传时间: 2012-11-23 17:09:59 (UTC+8)
    摘要: The proliferation cell nuclear antigen (PCNA) is a critical protein required for DNA replication in proliferating cells including cancer cells. However, direct inhibition of PCNA in cancer cells has been difficult due to the lack of targetable sites. We previously reported that phosphorylation of tyrosine 211 (Y211) on PCNA is important for the proliferative function of PCNA when this protein is associated with the chromatin in cancer cells. Here, we show that the Y211 phosphorylation of PCNA is a frequent event in advanced prostate cancer. To explore the potential of this signaling event in inhibition of cancer cell growth, we used a synthetic peptide, the Y211F peptide, which when present inhibits phosphorylation of Y211 on endogenous PCNA. Treatment with this peptide, but not a scrambled control peptide, resulted in S-phase arrest, inhibition of DNA synthesis, and enhanced cell death in a panel of human prostate cancer cell lines. In addition, treatment with the Y211F peptide led to decreased tumor growth in PC3-derived xenograft tumors in vivo in nude mice. Our study shows for the first time that PCNA phosphorylation at Y211 is a frequent and biologically important signaling event in prostate cancer. This study also shows a proof of concept that Y211 phosphorylation of PCNA may be used as a therapeutic target in prostate cancer cells, including cells of advanced cancers that are refractory to standard hormonal therapies.
    显示于类别:[生物科技學系] 期刊論文


    档案 描述 大小格式浏览次数


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈