English  |  正體中文  |  简体中文  |  Items with full text/Total items : 90069/105176 (86%)
Visitors : 6547195      Online Users : 549
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://asiair.asia.edu.tw/ir/handle/310904400/16320


    Title: Induction of Akt activity by chemotherapy confers aquired resistance
    Authors: 黃偉謙;Huang, W-C;洪明奇;Hung, Mien-Chie
    Contributors: 生物科技學系
    Date: 2009-05
    Issue Date: 2012-11-23 17:11:26 (UTC+8)
    Abstract: Resistance to chemotherapy is a major cause of treatment failure in human cancer. Accumulating evidence has indicated that the acquisition of resistance to chemotherapeutic drugs involves the activation of the PI3K/Akt pathway. Modulating Akt activity in response to chemotherapy has been observed often in chemoresistant cancers. The potential molecular mechanisms by which chemotherapeutic agents activate the PI3K/Akt pathway are emerging. Activation of this pathway evades the cytotoxic effects of chemotherapeutic agents via regulation of essential cellular functions such as protein synthesis, antiapoptosis, survival and proliferation in cancer. How chemotherapeutic agents induce Akt activation and how activated Akt confers chemoresistance through regulation of signaling networks are discussed in this review. Combining PI3K/Akt inhibitors with standard chemotherapy has been successful in increasing the efficacy of chemotherapeutic agents both in vivo and in vitro. Several small molecules have been developed to specifically target PI3K/Akt and other components of this pathway, which in combination with chemotherapy may be a valid approach to overcome therapeutic resistance. We propose several feedback and feedforward regulatory mechanisms of signaling networks for maintenance of the Akt activity for cell survival. These regulatory mechanisms may limit the efficacy of PI3K/Akt-targeted therapy; therefore, disruption of these mechanisms may be an effective strategy for development of novel anti-cancer therapies.
    Relation: JOURNAL OF THE FORMOSAN MEDICAL ASSOCIATION
    Appears in Collections:[生物科技學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML59View/Open


    All items in ASIAIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback