English  |  正體中文  |  简体中文  |  Items with full text/Total items : 92472/107769 (86%)
Visitors : 19029353      Online Users : 773
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://asiair.asia.edu.tw/ir/handle/310904400/16581

    Title: EZH2 Regulates Neuronal Differentiation of Mesenchymal Stem Cells through PIP5K1C-dependent Calcium Signaling
    Authors: 余永倫;Yu, Yung-luen;鄒瑞煌;Chou, Ruey-Hwang;洪明奇;Hung, Mien-Chie
    Contributors: 生物科技學系
    Date: 2011-03
    Issue Date: 2012-11-23 17:14:46 (UTC+8)
    Abstract: Enhancer of zeste homolog 2 (EZH2) regulates stem cells renewal, maintenance, and differentiation into different cell lineages including neuron. Changes in intracellular Ca(2+) concentration play a critical role in the differentiation of neurons. However, whether EZH2 modulates intracellular Ca(2+) signaling in regulating neuronal differentiation from human mesenchymal stem cells (hMSCs) still remains unclear. When hMSCs were treated with a Ca(2+) chelator or a PLC inhibitor to block IP(3)-mediated Ca(2+) signaling, neuronal differentiation was disrupted. EZH2 bound to the promoter region of PIP5K1C to suppress its transcription in proliferating hMSCs. Interestingly, knockdown of EZH2 enhanced the expression of PIP5K1C, which in turn increased the amount of PI(4,5)P(2), a precursor of IP(3), and resulted in increasing the intracellular Ca(2+) level, suggesting that EZH2 negatively regulates intracellular Ca(2+) through suppression of PIP5K1C. Knockdown of EZH2 also enhanced hMSCs differentiation into functional neuron both in vitro and in vivo. In contrast, knockdown of PIP5K1C significantly reduced PI(4,5)P(2) contents and intracellular Ca(2+) release in EZH2-silenced cells and resulted in the disruption of neuronal differentiation from hMSCs. Here, we provide the first evidence to demonstrate that after induction to neuronal differentiation, decreased EZH2 activates the expression of PIP5K1C to evoke intracellular Ca(2+) signaling, which leads hMSCs to differentiate into functional neuron lineage. Activation of intracellular Ca(2+) signaling by repressing or knocking down EZH2 might be a potential strategy to promote neuronal differentiation from hMSCs for application to neurological dysfunction diseases.
    Relation: JOURNAL OF BIOLOGICAL CHEMISTRY, V.286 N.11:9657-9667.
    Appears in Collections:[生物科技學系] 期刊論文

    Files in This Item:

    File Description SizeFormat

    All items in ASIAIR are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback