ASIA unversity:Item 310904400/16587
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 90570/105786 (86%)
造访人次 : 16377157      在线人数 : 350
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    题名: Kaempferol inhibits enterovirus 71 replication and internal ribosome entry site (IRES) activity through FUBP and HNRP proteins
    作者: 張竣維;Hebron, C.Chang
    贡献者: 生物科技學系
    关键词: Enterovirus 71;Kaempferol;Internal ribosome entry site;Trans-acting factors
    日期: 2011-03
    上传时间: 2012-11-23 17:14:50 (UTC+8)
    摘要: Flavonoids are associated with multiple biological and pharmacological activities, including anti-enterovirus activity. An internal ribosomal entry site (IRES) required for viral protein translation is a potential drug target for enterovirus 71 (EV71). Regulation translation initiation requires the interaction of IRES specific trans-acting host factors with viral IRES element. By evaluation of 12 flavonoids against EV71 infection, we found that (a) 7,8-dihydroxyflavone, kaempferol, quercetin, hesperetin and hesperidin exhibited more than 80% of cell survival and inhibition of EV71 infection; however, no anti-oxidative effects were noted from these flavonoids; (b) among them, only 7,8-dihydroxyflavone, kaempferol and hesperetin showed 40% of viral IRES activity; (c) kaempferol interfered with EV71 virus replication and pseudotyped virus production; and (d) FUBP1, FUBP3, HNRPD, HNRH1 and HNRPF proteins are associated with EV71 5′-UTR as shown using RNA affinity pull-down assay coupled with LC–MS/MS analysis. We firstly found that kaempferol may change the composition of these IRES associated trans-acting factors, and affect IRES function and EV71 virus replication. These studies help not only to understand the IRES function but also the mechanism by which drug induced cellular proteins are acting against EV71 infection.
    显示于类别:[生物科技學系] 期刊論文


    档案 描述 大小格式浏览次数


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈