English  |  正體中文  |  简体中文  |  Items with full text/Total items : 90453/105671 (86%)
Visitors : 15700557      Online Users : 181
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://asiair.asia.edu.tw/ir/handle/310904400/16589


    Title: Molecular Dynamics Analysis of Potent inhibitors of M2 Proton Channel against H1N1 Swine Influenza Virus
    Authors: 蔡輔仁;Tsai, Fuu-Jen;陳語謙;Chen, Calvin Yu-Chian
    Contributors: 生物科技學系
    Keywords: H1N1;M2 proton channel;docking;molecular dynamics;traditional Chinese medicine (TCM)
    Date: 2011-03
    Issue Date: 2012-11-23 17:14:51 (UTC+8)
    Abstract: The recent H1N1 (swine) influenza pandemic highlighted the urgent need of having effective anti‐viral strategies. In addition to neuraminidase inhibitors, there is another class of anti-viral drug known as M2 inhibitors that were, in the past, effective in treating seasonal influenza. However, due to the emergence of M2 inhibitor‐resistant influenza viruses, this class of drugs was not recommended for clinical usage in the latest influenza pandemic. In order to identify novel M2 inhibitors, we have performed molecular docking using a traditional Chinese medicine database (http://tcm.cmu.edu.tw/index.php). Docking and subsequent de novo designs gave 10 derivatives that have much better docking results than the control. Of these 10 derivatives, the top three, methyl isoferulate_1, genipin_1 and genipin_2, were selected for molecular dynamics simulation. During the simulation run, the top three derivatives all had stable interactions with M2 residues, Ser31 and Ala30. Methyl isoferulate_1 also has stable interaction to His37. Therefore, we recommend these three derivatives for further biomolecular experiments and clinical studies.
    Relation: MOLECULAR SIMULATION
    Appears in Collections:[生物科技學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML132View/Open


    All items in ASIAIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback