English  |  正體中文  |  简体中文  |  Items with full text/Total items : 90451/105768 (86%)
Visitors : 11090246      Online Users : 623
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://asiair.asia.edu.tw/ir/handle/310904400/16702


    Title: In silico pharmacology suggests ginger extracts may reduce stroke risks
    Authors: 蔡輔仁;Tsai, Fuu-Jen;陳語謙;Chen, Calvin Yu-Chian
    Contributors: 生物科技學系
    Date: 2011-08
    Issue Date: 2012-11-23 17:16:04 (UTC+8)
    Abstract: Aberrations in cyclic adenosine monophosphate (cAMP) signaling cascade has been linked to the allergic responses that associate with the risks of stroke or cardiovascular diseases. Phosphodiesterase 4D (PDE4D) has been shown to be highly involved in cAMP regulation and is hence implied to be a potential drug target in stroke prevention. To identify potential PDE4D inhibitors from traditional Chinese medicine (TCM), we employed machine learning modeling techniques to screen a comprehensive TCM database. The multiple linear regression (MLR) and support vector machine (SVM) models constructed have correlation coefficients of 0.8234 and 0.7854 respectively. Three candidates from the ginger family were identified based on the prediction models. Molecular dynamics simulation further validated the binding stabilities of each candidate in comparison to the control inhibitor L-454560. The intermolecular distances suggested that the candidates could hinder PDE4D from binding to cAMP. Furthermore, the HypoGen validation suggested that top2, top3, and the control L-454560 mapped with the predicted pharmacophores. The results suggested that the 3 compounds identified from the ginger family were capable in inhibiting cAMP binding and hydrolysis by PDE4D. We further identified and characterized the ligand binding properties that are associated with the inhibition of PDE4D.
    Relation: Molecular BioSystems;7(9):2702-10.
    Appears in Collections:[生物科技學系] 期刊論文

    Files in This Item:

    There are no files associated with this item.



    All items in ASIAIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback