ASIA unversity:Item 310904400/16806
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 90068/105181 (86%)
Visitors : 7148435      Online Users : 48
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item:

    Title: Berberine induces heme oxygenase-1 up-regulation through phosphatidylinositol 3-kinase/AKT and NF-E2-related factor-2 signaling pathway in astrocytes
    Authors: 蔡政芳;Tsai, Cheng-Fang
    Contributors: 生物科技學系
    Keywords: Berberine;Chinese herb;Heme oxygenase-1;Nrf2;Astrocytes
    Date: 2012-01
    Issue Date: 2012-11-23 17:17:13 (UTC+8)
    Abstract: Our previous report has shown that berberine effectively inhibits LPS- and IFN-γ-induced neuroinflammation in microglia cells. Recently, we also reported that HO-1 (Heme oxygenase-1) may be a therapeutic target to regulate neuroinflammation in microglia cells. The present study examined the ability of berberine, the major constituents of Chinese herb Rhizoma coptidis, to induce expression of HO-1, and analyzed its signaling mechanism in rat brain astrocytes. HO-1 is known as an antioxidant enzyme which helps to protect against cellular damage and maintains tissue homeostasis. Here, we found that berberine increased HO-1 mRNA and protein expression concentration- and time-dependently. In addition, berberine-induced HO-1 expression was attenuated by PI 3-kinase (phosphatidylinositol 3-kinase) inhibitors LY294002 and wortmannin, and an AKT inhibitor. Treatment of astrocytes with berberine also induced p85 (PI 3-kinase) and AKT phospholation, and increased AKT kinase activity. Berberine also increased NF-E2-related factor-2 (Nrf2) accumulation in the nucleus and increased Nrf2-DNA binding activity as determined by the EMSA (electrophoretic mobility shift assay). Moreover, berberine-induced increase of Nrf2-DNA binding activity was reduced by PI 3-kinase and AKT inhibitors. Berberine-increased HO-1-luciferase activity was also inhibited by co-transfection with dominant-negative (DN) mutants of p85 and AKT. Moreover, berberine-mediated increase of HO-1 transcriptional activity and protein expression were reduced by transfection with siRNA againt Nrf2. These findings suggest that berberine-increased HO-1 expression is mediated by Nrf2 activation through the PI 3-kinase/AKT pathway in astrocytes. Thus, berberine may be useful as a therapeutic agent for the treatment of neuroinflammation-associated disorders.
    Appears in Collections:[Department of Biotechnology] Journal Article

    Files in This Item:

    File Description SizeFormat

    All items in ASIAIR are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback