English  |  正體中文  |  简体中文  |  Items with full text/Total items : 90453/105671 (86%)
Visitors : 15669687      Online Users : 153
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://asiair.asia.edu.tw/ir/handle/310904400/16872

    Title: Mechanism of BAG1 Repair on Parkinson's Disease Linked-DJ1 Mutation
    Authors: 陳語謙;Chen, Calvin Yu-Chian
    Contributors: 生物科技學系
    Keywords: protein–protein interaction;BAG1;molecular dynamics;protein repair;Parkinson’s disease
    Date: 2012-05
    Issue Date: 2012-11-23 17:17:55 (UTC+8)
    Abstract: Mutant oncogene DJ1 L166P has been linked to a familial form of early-onset Parkinson’s disease (PD). The DJ1 mutant deformed C-terminal helices and prevented the formation of a functional DJ1 dimer. Intriguingly, chaperon modulator, BCL2-associated athanogene (BAG1), has been shown to repair DJ1 mutant and restore its functions. Molecular simulation techniques were employed to elucidate protein–protein interactions between BAG1 and DJ1. Interaction of BAG1 with DJ1 showed recovery of disrupted alpha helix structures and H-bonds stabilizing the functional site Cys106. The His126-Pro184 H-bond (hydrogen-bond) critical to maintaining dimer interfaces was also restored and led to the restoration of dimer formation. High conformational to functional DJ1 dimer was confirmed root mean square deviation = 0.74 Å). Results of this suggest several molecular insights on BAG1–DJ1 repair mechanism and may have an impact on advancing PD treatments.
    Appears in Collections:[生物科技學系] 期刊論文

    Files in This Item:

    File Description SizeFormat

    All items in ASIAIR are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback