English  |  正體中文  |  简体中文  |  Items with full text/Total items : 90069/105176 (86%)
Visitors : 6559211      Online Users : 562
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    ASIA unversity > 資訊學院 > 光電與通訊學系 > 期刊論文 >  Item 310904400/17132


    Please use this identifier to cite or link to this item: http://asiair.asia.edu.tw/ir/handle/310904400/17132


    Title: Minimum Power Architecture of Relay-based Network with Bandwidth and Hop-count Constraints
    Authors: 陳興忠;Chen, Hsing-Chung;王居尉;Wang, Jyu-Wei
    Contributors: 光電與通訊學系
    Keywords: Ad Hoc Network, Bandwidth (BW), Cellular Networks, Hop Count, Minimum Power
    Date: 2011-08
    Issue Date: 2012-11-26 10:22:22 (UTC+8)
    Abstract: Energy bills are on the rise and with the recent attention to saving the global environment. Saving energy (minimizing energy consumption) is becoming a standard issue for all industrial and commercial applications. Moreover, provisioning of quality of service (QoS) for multimedia traffic in wireless networks is complicated due to user mobility and limited wireless resources. Bandwidth (throughput) and hop count and are the important parameters in QoS requirements. In this article, a novel QoS constrained minimum power cellular ad hoc augmented network (QCMP CAHAN) architecture is proposed for next generation wireless networks. The QCMP CAHAN architecture is proposed to find the optimal minimum power route under bandwidth and hop-count constraints (QoS constraints). The QCMP CAHAN has a hybrid architecture, in which each mobile terminal (MT) of CDMA cellular networks has ad hoc communication capability. The QCMP CAHAN is an evolutionary approach to traditional cellular networks. We show that the total energy consumed by the MTs is lower in the case of QCMP CAHAN than in the case of traditional cellular networks. As the ad hoc communication range of each MT increases, the total transmitted energy in QCMP CAHAN decreases. However, due to the increased number of hops involved in information delivery between source and destination, the end-to-end delay increases. The maximum end-to-end hop count will be limited to a specified tolerable value, and QCMP CAHAN has ability to adapt to various hop-count constraints for different services. A MT in QCMP CAHAN will not relay any message when its ad hoc communication range is zero, and if this is the case for all MTs, then QCMP CAHAN reduces to the traditional cellular networks. Moreover, the bandwidth constrained problem in QCMP CAHAN is described as a nonlinear programming problem to minimize the total power consumption. We solved the bandwidth constrained problem in QCMP CAHAN by allocating optimum traffic rates on different routes between source and destination.
    Relation: Advanced Materials Research
    Appears in Collections:[光電與通訊學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML87View/Open


    All items in ASIAIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback