ASIA unversity:Item 310904400/18531
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 90453/105672 (86%)
造访人次 : 12080971      在线人数 : 656
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    ASIA unversity > 資訊學院 > 資訊工程學系 > 期刊論文 >  Item 310904400/18531


    题名: Improving Linear Classifier for Chinese Text Categorization
    作者: 王經篤;Wang, Jing-Doo
    贡献者: 資訊工程學系
    关键词: Information retrieval;Linear classifier;Text categorization
    日期: 2004-03
    上传时间: 2012-11-26 13:54:51 (UTC+8)
    摘要: The goal of this paper is to derive extra representatives from each class to compensate for the potential weakness of linear classifiers that compute one representative for each class. To evaluate the effectiveness of our approach, we compared with linear classifier produced by Rocchio algorithm and the k-nearest neighbor (kNN) classifier. Experimental results show that our approach improved linear classifier and achieved micro-averaged accuracy close to that of kNN, with much less classification time. Furthermore, we could provide a suggestion to reorganize the structure of classes when identify new representatives for linear classifier.
    關聯: Information Processing and Management
    显示于类别:[資訊工程學系] 期刊論文


    档案 描述 大小格式浏览次数


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈