ASIA unversity:Item 310904400/4633
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 90587/105803 (86%)
Visitors : 16752575      Online Users : 21
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item:

    Title: Determinants of rapamycin sensitivity in breast cancer cells
    Authors: Noh, W.-C.;Mondesire, W. H.;Peng, J.;Jian, W.;Zhang, H.;Dong, J.;Mills, G. B.;Mien-Chie Hung;Meric-Bernstam, F.
    Date: 2004-02
    Issue Date: 2009-11-27 13:57:09 (UTC+8)
    Publisher: Asia University
    Abstract: Purpose: Rapamycin inhibits the serine-threonine kinase mammalian target of rapamycin (mTOR), blocking phosphorylation of p70 S6 kinase (S6K1) and 4E-binding protein 1 (4E-BP1) and inhibiting protein translation and cell cycle progression. Rapamycin and its analogues are currently being tested in clinical trials as novel-targeted anticancer agents. Although rapamycin analogues show activity in clinical trials, only some of the treated patients respond. The purpose of this study is to identify determinants of rapamycin sensitivity that may assist the selection of appropriate patients for therapy.

    Experimental Design: Breast cancer cell lines representing a spectrum of aberrations in the mTOR signaling pathway were tested for rapamycin sensitivity. The expression and phosphorylation state of multiple components of the pathway were tested by Western blot analysis, in the presence and absence of rapamycin.

    Results: Cell proliferation was significantly inhibited in response to rapamycin in 12 of 15 breast cancer cell lines. The ratio of total protein levels of 4E-BP1 to its binding partner eukaryotic initiation factor 4E did not predict rapamycin sensitivity. In contrast, overexpression of S6K1, and phosphorylated Akt independent of phosphatase and tensin homologue deleted from chromosome 10 status, were associated with rapamycin sensitivity. Targeting S6K1 and Akt with small interfering RNA and dominant-negative constructs, respectively, decreased rapamycin sensitivity. Rapamycin inhibited the phosphorylation of S6K1, ribosomal S6 protein, and 4E-BP1 in rapamycin-resistant as well as -sensitive cells, indicating that its ability to inhibit the mTOR pathway is not sufficient to confer sensitivity to rapamycin. In contrast, rapamycin treatment was associated with decreased cyclin D1 levels in the rapamycin-sensitive cells but not in rapamycin-resistant cells.

    Conclusions: Overexpression of S6K1 and expression of phosphorylated Akt should be evaluated as predictors of rapamycin sensitivity in breast cancer patients. Furthermore, changes in cyclin D1 levels provide a potential pharmacodynamic marker of response to rapamycin.
    Relation: CLINICAL CANCER RESEARCH 10(3):1013-1023
    Appears in Collections:[Department of Biotechnology] Journal Article

    Files in This Item:

    File Description SizeFormat
    310904400-4633 .doc30KbMicrosoft Word393View/Open

    All items in ASIAIR are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback