ASIA unversity:Item 310904400/4764
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 90069/105176 (86%)
造访人次 : 6420814      在线人数 : 562
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/4764


    题名: Predicting Subcellular Location of Eukaryotic Proteins using Baysian and K-Nearest Neighbor Classifier
    作者: Jeffrey J. P. Tsai;H. W. Hsiao;S. H. Chen;P.C. Chang
    关键词: subcellular location prediction;na�ve Bayesian classifier;k-nearest neighbor classifier;functional domain;feature reduction
    日期: 2008-09
    上传时间: 2009-12-02 09:04:05 (UTC+8)
    出版者: Asia University
    摘要: Biologically, the function of a protein is highly related to its subcellular location. It is of necessity to develop a reliable method for protein subcellular location prediction, especially when a large amount of proteins are to be analyzed. Various methods have been proposed to perform the task. The results, however, are not satisfactory in terms of effectiveness and efficiency. A hybrid approach combining na�ve Bayesian classifier and k-nearest neighbor classifier is proposed to classify eukaryotic proteins represented as a combination of amino acid composition, dipeptide composition, and functional domain composition. Experimental results show that the total accuracy of a set of 17,655 proteins can reach up to 91.5%.
    關聯: Journal of Information Science and Engineering 24(5):1361-1375
    显示于类别:[生物資訊與醫學工程學系 ] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    0KbUnknown273检视/开启
    310904400-4764.doc36KbMicrosoft Word238检视/开启


    在ASIAIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈