English  |  正體中文  |  简体中文  |  Items with full text/Total items : 90429/105609 (86%)
Visitors : 10300566      Online Users : 425
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    ASIA unversity > 資訊學院 > 會議論文 >  Item 310904400/5821


    Please use this identifier to cite or link to this item: http://asiair.asia.edu.tw/ir/handle/310904400/5821


    Title: Bipanpositionable Bipancyclic of Hypercube
    Authors: Yuan-Kang Shih;Cheng-Kuan Lin;Jimmy J. M. Tan;Lih-Hsing Hsu
    Contributors: 國立台中教育大學
    Keywords: bipanpositionable;bipancyclic;hypercube;hamiltonian
    Date: 2007-12-20
    Issue Date: 2009-12-15
    Publisher: 亞洲大學資訊學院;中華電腦學會
    Abstract: A bipartite graph is bipancyclic if it contains a cycle of every even length from 4 to jV (G)j inclusive. A hamiltonian bipartite graph G is bipanpositionable if, for any two di®erent vertices x and y, there exists a hamiltonian cycle C of G such that dC(x; y) = k for any integer k with dG(x; y) · k · jV (G)j=2 and (k ¡ dG(x; y)) being even. A bipartite graph G is k-cycle bipanpositionable if, for any two di®erent vertices x and y, there exists a cycle of G with dC(x; y) = l and jV (C)j = k and for any integer l with dG(x; y) · l · k 2 and (l ¡ dG(x; y)) being even. A bipartite graph G is bipanpositionable bipancyclic if G is k-cycle bipanpositionable for every even integer k, 4 · k · jV (G)j. We prove that the hypercube Qn is bipanpositionable bipancyclic if and only if n ¸ 2.
    Relation: 2007NCS全國計算機會議 12-20~21
    Appears in Collections:[資訊學院] 會議論文

    Files in This Item:

    File SizeFormat
    9017.pdf133KbAdobe PDF492View/Open


    All items in ASIAIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback