ASIA unversity:Item 310904400/64315
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 90120/105277 (86%)
造访人次 : 8144017      在线人数 : 1819
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/64315


    题名: Improving protein complex classification accuracy using amino acid composition profile
    作者: 黃建宏;Huang, Chien-Hung;周思瑜;Chou, Szu-Yu;吳家樂;Ng, Ka-Lok
    贡献者: 生物與醫學資訊學系
    关键词: Protein complex;Protein–protein interaction;Gene Ontology;Sequence alignment;Physicochemical property;Hydrophobic;Hydrophilic;Amino acid composition profile;Machine learning method
    日期: 2013-09
    上传时间: 2013-10-29 17:36:32 (UTC+8)
    摘要: Protein complex prediction approaches are based on the assumptions that complexes have dense protein–protein interactions and high functional similarity between their subunits. We investigated those assumptions by studying the subunits' interaction topology, sequence similarity and molecular function for human and yeast protein complexes. Inclusion of amino acids' physicochemical properties can provide better understanding of protein complex properties. Principal component analysis is carried out to determine the major features. Adopting amino acid composition profile information with the SVM classifier serves as an effective post-processing step for complexes classification. Improvement is based on primary sequence information only, which is easy to obtain.
    關聯: COMPUTERS IN BIOLOGY AND MEDICINE, 43(9),Pages 1196–1204.
    显示于类别:[生物資訊與醫學工程學系 ] 期刊論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML235检视/开启


    在ASIAIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈