English  |  正體中文  |  简体中文  |  Items with full text/Total items : 90437/105768 (86%)
Visitors : 10985515      Online Users : 509
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    ASIA unversity > 資訊學院 > 資訊工程學系 > 期刊論文 >  Item 310904400/64362


    Please use this identifier to cite or link to this item: http://asiair.asia.edu.tw/ir/handle/310904400/64362


    Title: Disjoint cycles in hypercubes with prescribed vertices in each cycle
    Authors: Cheng-Kuan, L;Lin, Cheng-Kuan;Jimmy, J.M.T;Jimmy, J.M.Tan;Hs, Lih-Hsing;Hsu, Lih-Hsing;龔自良;KUNG, TZU-LIANG
    Contributors: 資訊工程學系
    Keywords: Spanning cycle, Hamiltonian cycle, Cyclable, Hypercube, Graph
    Date: 201308
    Issue Date: 2013-10-29 17:41:05 (UTC+8)
    Abstract: A graph G is spanning r-cyclable of order t if for any r nonempty mutually disjoint vertex subsets A1,A2,…,Ar of G with |A1∪A2∪⋯∪Ar|≤t, there exist r disjoint cycles C1,C2,…,Cr of G such that C1∪C2∪⋯∪Cr spans G, and Ci contains Ai for every i. In this paper, we prove that the n-dimensional hypercube Qn is spanning 2-cyclable of order n−1 for n≥3. Moreover, Qn is spanning k-cyclable of order k if k≤n−1 for n≥2. The spanning r-cyclability of a graph G is the maximum integer t such that G is spanning r-cyclable of order k for k=r,r+1,…,t but is not spanning r-cyclable of order t+1. We also show that the spanning 2-cyclability of Qn is n−1 for n≥3.
    Relation: DISCRETE APPLIED MATHEMATICS
    Appears in Collections:[資訊工程學系] 期刊論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML154View/Open


    All items in ASIAIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback