English  |  正體中文  |  简体中文  |  Items with full text/Total items : 90452/105769 (86%)
Visitors : 11946866      Online Users : 393
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    ASIA unversity > 資訊學院 > 資訊工程學系 > 會議論文 >  Item 310904400/65316

    Please use this identifier to cite or link to this item: http://asiair.asia.edu.tw/ir/handle/310904400/65316

    Title: The two-disjoint-cycle-cover pancyclicity of locally twisted cubes
    Authors: Kung, Tzu-Liang;Chen, Hon-Chan
    Contributors: 資訊工程學系
    Keywords: Pancyclic;interconnection network;locally twisted cube;two-disjoint-cycle-cover
    Date: 2013-12
    Issue Date: 2013-12-18 10:42:43 (UTC+8)
    Abstract: In this paper, a graph G is two-disjoint-cyclecover r-pancyclic if for any integer l satisfying r ? l ? |V (G)|?r, there exist two vertex-disjoint cycles C1 and C2 in G such that the lengths of C1 and C2 are l and |V (G)|?l, respectively, where |V (G)| denotes the total number of vertices in G. Moreover, we define that a graph G is twodisjoint-cycle-cover edge r-pancyclic if for any two vertexdisjoint edges (u, v) and (x, y) of G, there exist two vertexdisjoint cycles C1 and C2 in G such that (i) C1 contains (u, v) with length l for any integer l satisfying r ? l ? |V (G)|?r, and (ii) C2 contains (x, y) with length |V (G)|?l. Then, we prove that the n-dimensional locally twisted cubes LTQn can be two-disjoint-cycle-cover 4-pancyclic for n ? 3 and two-disjoint-cycle-cover edge 2n-pancyclic for n ? 4.
    Relation: 2013全國計算機會議
    Appears in Collections:[資訊工程學系] 會議論文

    Files in This Item:

    File SizeFormat

    All items in ASIAIR are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback