English  |  正體中文  |  简体中文  |  Items with full text/Total items : 90453/105672 (86%)
Visitors : 13126785      Online Users : 581
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    ASIA unversity > 資訊學院 > 資訊工程學系 > 會議論文 >  Item 310904400/65333

    Please use this identifier to cite or link to this item: http://asiair.asia.edu.tw/ir/handle/310904400/65333

    Title: 以乘性權重更新演算法綜合預測 蛋白質 O型醣基化位置
    Meta-Prediction of O-glycosylation Sites with Multiplicative Weighted Update Algorithms
    Authors: 呂威甫;陳乙豪
    Contributors: 資訊工程學系
    Keywords: 醣基化;綜合預測程式;線上決策問題;乘法更新演算法glycosylation, meta-predictor, multiplicative update algorithms, on-line decision problem
    Date: 2013-12
    Issue Date: 2013-12-18 10:44:28 (UTC+8)
    Abstract: 目前已發展許多醣基化預測程式,這些程式各有所長,整合這些預測程式以達到更好的預測效果是目前很重要的研究方向。本論文將提以應用於線上決策問題的乘性權重更新演算法,整合出整合不同蛋白質O型醣基化預測程式,稱為綜合預測程式,以達到更好的預測效果。實驗結果顯示,我們演算法的表現均優於所整合之醣基化基礎預測程式: Oglyc, DictyOGlyc, YinOYan與NetOGlyc,獲得了更好的預測效能。

    Abstract?Many methods for predicting glycosylation sites in protein sequences have been developed. Finding effective meta-prediction strategies thatintegratedifference kind of glycosylation sites predictors to achieve higher prediction performance is highly required. In this paper, we use the framework of multiplicative update algorithms in on-line decision problem to get more efficiency meta-predictors. The experimental results show that performances of our meta-predictor are better than Oglyc, DictyOGlyc, YinOYang, and NetOGlyc in O-glycosylation sitesprediction.
    Relation: 2013全國計算機會議
    Appears in Collections:[資訊工程學系] 會議論文

    Files in This Item:

    File SizeFormat

    All items in ASIAIR are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback