ASIA unversity:Item 310904400/7152
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 90429/105609 (86%)
造訪人次 : 10283081      線上人數 : 92
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    ASIA unversity > 資訊學院 > 會議論文 >  Item 310904400/7152


    題名: A Framework of Spatio-Temporal Analysis for Video Surveillance
    作者: Duan-Yu Chen;Kevin Cannons;Hsiao-Rong Tyan;Sheng-Wen Shih;Hong-Yuan Mark Liao
    貢獻者: Institute of Information Science, Academia Sinica, Taiwan;Department of Computer Science and Engineering, York University, Canada;Department of Information and Computer Engineering, Chung Yuan Christian University, Taiwan;Department of Computer Science and Information Engineering;Institute of Information Science, Academia Sinica, Taiwan
    關鍵詞: video surveillance;object classification;spatiotemporal analysis
    日期: 2007-12-20
    上傳時間: 2010-01-12 16:23:31 (UTC+8)
    出版者: 亞洲大學資訊學院;中華電腦學會
    摘要: This paper presents a video surveillance system that is capable of detecting and classifying moving targets in real-time. The system extracts moving targets from a video stream and classifies them into predefined categories according to their spatiotemporal properties. Classification of the moving targets is completed via a combination of a temporal boosted classifier and spatiotemporal “motion energy” analysis. We illustrate that a temporal boosted classifier can be designed that successfully recognizes five object categories: person(s), bicycle, motorcycle, vehicle, and person with umbrella. The proposed temporal boosted classifier has the unique ability to improve weak classifiers by allowing them to make use of previous information when evaluating the current frame. In addition, we demonstrate a method to further process targets in the “person(s)” category to determine if they are single moving individuals or crowds. It is shown that this challenging task of moving crowd recognition can be effectively performed using spatiotemporal motion energies. These motion energies provide a rich description of a target’s dynamic characteristics, from which classification can be performed. Our empirical evaluations demonstrate that the proposed system is extremely effective at recognizing all predefined object classes.
    關聯: 2007NCS全國計算機會議 12-20~21
    顯示於類別:[資訊學院] 會議論文


    檔案 描述 大小格式瀏覽次數
    4064.pdf352KbAdobe PDF410檢視/開啟


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋