ASIA unversity:Item 310904400/79496
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 90429/105609 (86%)
造访人次 : 10288203      在线人数 : 81
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    题名: Chemical Constituents of Rhododendron formosanum Show Pronounced Growth Inhibitory Effect on Non-Small-Cell Lung Carcinoma Cells
    作者: 魏宗德;Way, Tzong-Der;Ts, Shang-Jie;Tsai, Shang-Jie;Wan, Chao-Min;Wang, Chao-Min;Ho, Chi-Tang;Ho, Chi-Tang;Chang-Hung, C;*, Chang-Hung Chou
    贡献者: 保健營養生技學系
    日期: 2014-01
    上传时间: 2014-06-03 19:22:22 (UTC+8)
    摘要: The aim of the present study was to investigate whether Rhododendron formosanum Hemsl. (Ericaceae), an endemic species in Taiwan, exhibits antineoplastic potential against non-small-cell lung carcinoma (NSCLC). R. formosanum was successively extracted with methanol and then separated into dichloromethane (RFL-DCM), ethyl acetate (RFL-EA), n-butanol (RFL-BuOH), and water (RFL-H2O) fractions. Among these extracts, RFL-EA exhibited the most effective antineoplastic effect. This study also demonstrated that fractions 2 and 3 from the RFL-EA extract (RFL-EA-2, RFL-EA-3) possessed the strongest antineoplastic potential against NSCLC cells. The major phytochemical constituents of RFL-EA-2 and RFL-EA-3 were ursolic acid, oleanolic acid, and betulinic acid. This study indicated that ursolic acid demonstrated the most efficient antineoplastic effects on NSCLC cells. Ursolic acid inhibited growth of NSCLC cells in a dose- and time-dependent manner and stimulated apoptosis. Apoptosis was substantiated by activation of caspase-3 and -9, and a decrease in Bcl-2 and an elevation of the Bax were also observed following ursolic acid treatment. Ursolic acid activated AMP-activated protein kinase (AMPK) and then inhibited the mammalian target of rapamycin (mTOR), which controls protein synthesis and cell growth. Moreover, ursolic acid decreased the expression and/or activity of lipogenic enzymes, such as acetyl-CoA carboxylase (ACC) and fatty acid synthase (FASN) via AMPK activation. Collectively, these data provide insight into the chemical constituents and anticancer activity of R. formosanum against NSCLC cells, which are worthy of continued study.
    显示于类别:[食品營養與保健生技學系] 期刊論文


    档案 大小格式浏览次数


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈