ASIA unversity:Item 310904400/79573
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 90096/105238 (86%)
造访人次 : 7207176      在线人数 : 618
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://asiair.asia.edu.tw/ir/handle/310904400/79573


    题名: ynergistic effects of 5-fluorouracil and gambogenic acid on A549 cells: activation of cell death caused by apoptotic and necroptotic mechanisms via the ROS-mitochondria pathway
    作者: 張竣維;Hebron, C.Chang
    贡献者: 生物科技學系
    关键词: 5-fluorouracil;gambogenic acid;synergism;A549;necroptosis
    日期: 2014
    上传时间: 2014-06-04 10:19:37 (UTC+8)
    摘要: 5-Fluorouracil (5-FU) is one of the widely used chemotherapeutic drugs for various cancer treatments, but its chemo-drug resistance is a major obstacle in clinical settings. The anticancer effects of gambogenic acid (GNA) and its potential mechanisms have been well documented in the past few years. In this study, we determined the synergistic inhibitory effects of GNA and 5-FU on A549 human lung cancer cells. 5-FU combined with GNA inhibited the viability of A549 cells in a concentration-dependent manner. The mitochondrial tolerance of this two-kind of drugs combination treatment was stronger than a single-drug treatment. Combination treatment caused a morphological change of A549 cells. Flow cytometric evidence indicated that the combined treatment caused significant cell death, with the death rate of A549 cells treated with combination drugs showing a time-dependent manner. Furthermore, combination treatment of GNA and 5-FU showed up-regulated of caspase-3, caspase-9, bax, RIP1, apoptosis-inducing factor (AIF), voltage-dependent anion channel (VDAC), cytochrome c and cyclophilin D and down-regulated bcl-2. In conclusion, in addition to the activation of caspase-dependent apoptosis, the combination of GNA and 5-FU might also cause cell death of A549 cells by activating caspase-independent necroptosis. These mechanisms may be due to the toxicity of targeted toxin to mitochondria via the mitochondrial pathway.
    關聯: CHEMICAL & PHARMACEUTICAL BULLETIN,37(8):1259-68.
    显示于类别:[生物科技學系] 期刊論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML152检视/开启


    在ASIAIR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈