ASIA unversity:Item 310904400/8778
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 90429/105609 (86%)
造访人次 : 10285623      在线人数 : 106
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    题名: Fuzzy C-mean clustering algorithms based on picard iteration and particle swarm optimization
    作者: Liu, Hsiang-Chuan;Yih, Jeng-Ming;Wu, Der-Bang;Liu, Shin-Wu
    贡献者: Department of Bioinformatics
    关键词: Copying;Fuzzy clustering;Fuzzy rules;Fuzzy systems;Geology;Particle swarm optimization (PSO);Remote sensing;Technical presentations;FCM algorithm;Fitness evaluations;Fuzzy C mean;Fuzzy c-mean clustering algorithm;Fuzzy C-means algorithms;Local minimums;Objective functions;Optimization problems;Picard iteration;Real data sets;Real-world application;Robust strategy
    日期: 2009
    上传时间: 2010-04-08 20:06:01 (UTC+8)
    出版者: Asia University
    摘要: The popular fuzzy c-means algorithm (FCM) converges to a local minimum of the objective function. Hence, different initializations may lead to different results. The important issue is how to avoid getting a bad local minimum value to improve the cluster accuracy. The particle swarm optimization (PSO) is a popular and robust strategy for optimization problems. But the main difficulty in applying PSO to real-world applications is that PSO usually need a large number of fitness evaluations before a satisfying result can be obtained. In this paper, the improved new algorithm, Fuzzy C-Mean based on Picard iteration and PSO (PPSO-FCM)", is proposed. Two real data sets were applied to prove that the performance of the PPSO-FCM algorithm is better than the conventional FCM algorithm and the PSO-FCM algorithm. © 2008 IEEE.
    關聯: 2008 International Workshop on Education Technology and Training and 2008 International Workshop on Geoscience and Remote Sensing, ETT and GRS 2008 2:838-842
    显示于类别:[生物資訊與醫學工程學系 ] 會議論文


    档案 描述 大小格式浏览次数
    101.doc31KbMicrosoft Word364检视/开启


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈