ASIA unversity:Item 310904400/8785
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 90429/105609 (86%)
造访人次 : 10283404      在线人数 : 78
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    题名: Fuzzy C-mean algorithm based on "complete" mahalanobis distances
    作者: Liu, Hsiang-Chuan;Yih, Jeng-Ming;Wu, Der-Bang;Liu, Shin-W.U.
    贡献者: Department of Bioinformatics
    关键词: Color;Control theory;Covariance matrix;Cybernetics;Diesel engines;Fuzzy clustering;Fuzzy rules;Fuzzy systems;Learning systems;Optical properties;Robot learning;Spheres;FCM;FCM-CM;FCM-M;GG;GK;Mahalanobis distances
    日期: 2008
    上传时间: 2010-04-08 20:06:05 (UTC+8)
    出版者: Asia University
    摘要: Some of the wall-known fuzzy clustering algorithms are based on Euclidean distance function, which, can only be used to detect spherical structural clusters. Gustafson-Kessel (GK) clustering algorithm and Gath-Geva (GG) clustering algorithm were developed to detect non-spherical structural clusters. Both of GG and GK algorithms suffer from the singularity problem of covariance matrix and the effect of initial status. In this paper, a new Fuzzy C-Means algorithm based on Particle Swarm Optimization and Mahalanobis is distance without prior information (PSO-FCM-M) is proposed, to improve those limitations of GG and GK algorithms. And we point out that the PSO-FCM algorithm is a special case of PSO-FCM-M algorithm. The experimental results of two real data sets show that the performance of our proposed PSO-FCM-M algorithm is better than those of the FCM, GG, GK algorithms. © 2009 ISSN.
    關聯: Proceedings of the 7th International Conference on Machine Learning and Cybernetics, ICMLC 6 :3569-3574
    显示于类别:[生物資訊與醫學工程學系 ] 會議論文


    档案 描述 大小格式浏览次数
    162.doc31KbMicrosoft Word395检视/开启


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈